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Bernoulli Distribution

e Consider a single binary random variable z &€ {O, 1}. For example, x
can describe the outcome of flipping a coin:

Coin flipping: heads = 1, tails = 0.
e The probability of x=1 will be denoted by the parameter 1, so that:
ple=1p)=p 0<p<l.

e The probability distribution, known as Bernoulli distribution, can be
written as:

Bern(z|p) = p®(1—p)'~*
Elz] = pu
varjz] = p(l—p)



Parameter Estimation

o Suppose we observed a dataset D = {xl, ey xN}

e We can construct the likelihood function, which is a function of 1.

N
p(Dlp) = H panlp) = || v @ —p)'=*n
n=1

e Equivalently, we can maximize the log of the likelihood function:

N
Inp(D|p) = Zlnp Tp|pt) = Z{xnlnu+(l—xn)ln(1—u)}

n=1

« Note that the likelihood function depends on the N observations x_ only

through the sum § Qj
n <*—_ Sufficient

n Statistic



Parameter Estimation
e Suppose we observed a dataset D = {x1,...,xn}
N
Inp(D|p) = Zlnp Tp|pt) = Z{xnlnu+(l—xn)ln(1—u)}
n=1

e Setting the derivative of the log-likelihood function w.r.t 1 to zero, we
obtain:

2|3

MMLZ%Z%Z

n=1

where m is the number of heads.



Multinomial Variables

e Consider a random variable that can take on one of K possible mutually
exclusive states (e.g. roll of a dice).

e We will use so-called 1-of-K encoding scheme.

e If a random variable can take on K=6 states, and a particular
observation of the variable corresponds to the state x,=1, then x will be
resented as:

1-of-K coding scheme: x = (0,0,1,0,0, O)T

o If we denote the probability of x,=1 by the parameter 1, then the
distribution over x is defined as:

p(x|p) = H pe*  Vk:pg >0 and Z'u’f —



Multinomial Variables

e Multinomial distribution can be viewed as a generalization of Bernoulli
distribution to more than two outcomes.

p(x|p) = Hu

e It is easy to see that the distribution is normalized:

D () =) =1
pd k=1

and
Elx|p| = Zp (x|p)x = (p1, ..., o) = p



Maximum Likelihood Estimation

e Suppose we observed a dataset D = {Xl, ey XN}

e We can construct the likelihood function, which is a function of 1.

» Note that the likelihood function depends on the N data points only
though the following K quantities:

mip — ank, k = 1,...,K.

which represents the number of observations of x=1.

e These are called the sufficient statistics for this distribution.



Maximum Likelihood Estimation

e To find a maximum likelihood solution for 1, we need to maximize the
log-likelihood taking into account the constraint that ), ur =1

e Forming the Lagrangian:

K K
kalnuk + A (Zuk - 1)
k=1 k=1

m
e = =M/ A M%L:Wk A=—N

which is the fraction of observations for which x,=1.



Gaussian Univariate Distribution

e In the case of a single variable x, the Gaussian distribution takes form:

N (|, 0?) 1

N (@, 0*) =
A

D R {_%(I - “)2}

which is governed by two parameters:

—  1(mean)

+ — - 342 (variance)

« The Gaussian distribution satisfies:
N (z|p,0%) >0

/Oo N (z|p,0?) dz =1

— 00



Multivariate Gaussian Distribution

e For a D-dimensional vector x, the Gaussian distribution takes form:

N, B) = o e {3 e )T x|

CBQ‘
which is governed by two parameters:

@ — 1is a D-dimensional mean vector.

— §is a D by D covariance matrix.

and |§| denotes the determinant of §.

« Note that the covariance matrix is a symmetric positive definite
matrix.



Central Limit Theorem

e The distribution of the sum of N i.i.d. random variables becomes
increasingly Gaussian as N grows.

e Consider N variables, each of which has a uniform distribution over the
interval [0,1].

e Let us look at the distribution over the mean:

r1+xXo+ .... + TN
N :

e As N increases, the distribution tends towards a Gaussian distribution.




Moments of the Gaussian Distribution

e The expectation of x under the Gaussian distribution:

E|[x]

1 1
2m)P7 [Z]7
1 1
2m)P7 [2]7

[exw{-3

| §<x—u>Tz—1<x—u>}xdx

[ 1

o]

—§ZTE } (z + p)dz
J

Elx| = p

Y

The term in z in the factor (z+1)
will vanish by symmetry.



Moments of the Gaussian Distribution

e The second order moments of the Gaussian distribution:
Exx'] = pp’ + X2

e The covariance is given by:

covix] =E[(x —E[x])(x —Ex))'] ==
Elx| =p

» Because the parameter matrix § governs the covariance of x under the
Gaussian distribution, it is called the covariance matrix.



Moments of the Gaussian Distribution

« Contours of constant probability density:

5172‘ .’172‘ .’172‘
T & T1
» » »
(a) (b) (<)
Covariance Diagonal, axis- Spherical
matrix is of aligned covariance (proportional to
general form. matrix. identity) covariance

matrix.



Partitioned Gaussian Distribution

e Consider a D-dimensional Gaussian distribution: p(x) = N (x|u, 3)

o Let us partition x into two disjoint subsets x, and x,:

Xa M Eaa Eab
<) () (5 )

e In many situations, it will be more convenient to work with the
precision matrix (inverse of the covariance matrix):

_ Aaa  Aap
A=x"" A= (70
(Aba Abb)

o Note that @__ is not given by the inverse of § ..



Conditional Distribution

e It turns out that the conditional distribution is also a Gaussian
distribution:

p(Xa|Xb) — N(Xa|ll’a|b7 Za|b>

Covariance does not
depend on x,.

/
Ea|b — Ac:a,l — Eaa — 23a,bzzb_blz]ba
Koy = 2lalb {Acatty — Aan(Xp — pp) }

= g — Ay Aap(xp — )
= P+ ZapZy, (X6 — Hp)

R

\

Linear function
of x,.



Marginal Distribution

e It turns out that the marginal distribution is also a Gaussian distribution:

p(Xa) = / P(Xa, Xp) dxp
= N(Xa|ty, Xaa)

e For a marginal distribution, the mean and covariance are most simply
expressed in terms of partitioned covariance matrix.

Xq M 2Jaa, 2Jab
() () (5 )



Conditional and Marginal Distributions

xp = 0.7 p(zalzy =0.7)

0.5¢




Maximum Likelihood Estimation

e Suppose we observed i.i.d data X = {x1,...,Xx}.

e We can construct the log-likelihood function, which is a function of
1and §:

N
ND N 1 _
Inp(X|p, %) = ———1n(27) — 5 In|¥] - 5 d (% — )= (%0 — )
n=1

» Note that the likelihood function depends on the N data points only
though the following sums:

Sufficient Statistics

N N
E X, E ang



Maximum Likelihood Estimation

e To find a maximum likelihood estimate of the mean, we set the
derivative of the log-likelihood function to zero:

0
— Inp(X

Mz
||

n=1

and solve to obtain:

Hve = 7 an-

n=1
e Similarly, we can find the ML estimate of §:

N
1
ML = N Z(Xn — i) (Xn — Hair) -

n=1



Maximum Likelihood Estimation

 Evaluating the expectation of the ML estimates under the true

distribution, we obtain: Unbiased estimate
o
E[MML] — M
N —1
E[3¥mn] = N 2.~ Biased estimate

* Note that the maximum likelihood estimate of § is biased.

e We can correct the bias by defining a different estimator:
_ 1 XN

=y 2 (e = ) (3 — ) -

n=1



Student’s t-Distribution

e Consider Student’s t-Distribution

p(alpa,b) — / N (alp, 7 )Gam(r|a, b) dr

- /0 N (z)p, (n\)~1) Gam(n|v/2,v/2) dn “«---
T(v/2+1/2) ( A\ Mo — p)2] 7272
— 1+ .
F(V/Q) TV v :
= St(alu A v) Infinite mixture |
where of Gaussians ~~~"""""""--oo--
A=a/b n=r7b/a v = 2a.
%
e N\
Sometimes called Degrees of freedom

the precision
parameter.



Student’s t-Distribution

e Setting ° = 1 recovers Cauchy distribution
e The limit°!' 1 corresponds to a Gaussian distribution.

| v =1 vV — 00
St(x|u, A, v) | Cauchy N (z|u,\71)
0.5
0.4 ~ v =10

03¢

0.2}

0.1t




Student’s t-Distribution

e Robustness to outliners: Gaussian vs. t-Distribution.




Student’s t-Distribution

e The multivariate extension of the t-Distribution:

St(xlp, Ayv) — / " N, (pA) Y Cam(nlv/2,v/2) dn

I(D/2+v/2) |A|Y? A_2 —D/2—v/2
C(/2)  (nw)DP2 [” ]

1%
where A% = (x — pu)TA(x — p)

e Properties:

Elx] = p, ifv>1
cov([x| = (uiQ)A_l’ if v>2
mode|x] =




Mixture of Gaussians

« When modeling real-world data, Gaussian assumption may not be
appropriate.

e Consider the following example: Old Faithful Dataset

100 ; ; ; ; 100
80 | 20|
60 | 60 |
1 2 3 4 5 6 1 2 3 4 5
Single Gaussian Mixture of two

Gaussians



Mixture of Gaussians

e We can combine simple models into a complex model by defining a
superposition of K Gaussian densities of the form:

K
p(x) = Z?TkN(XWm Xk) o)y

k:]_ | J

1
Component

Mixing coefficient

K
k > — 1
\V/ T O l;ﬂ'k o3 >

« Note that each Gaussian component has its own mean 1, and
covariance §,. The parameters Y4, are called mixing coefficients.

» Mote generally, mixture models can comprise linear combinations of
other distributions.



Mixture of Gaussians

e lllustration of a mixture of 3 Gaussians in a 2-dimensional space:

057

(a) Contours of constant density of each of the mixture components,
along with the mixing coefficients

K

(b) Contours of marginal probability density p(x) = Z TN (x|, 3f)
k=1

(c) A surface plot of the distribution p(x).



Maximum Likelihood Estimation

o Given a dataset D, we can determine model parameters 1. §,, 14, by
maximizing the log-likelihood function:

lnp(X’ﬂauv Zln Zﬂ-k—/\[ Xn’u’kazk)
n=1

. J
Y

Log of a sum: no closed form solution

e Solution: use standard, iterative, numeric optimization methods or the
Expectation Maximization algorithm.



