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Intermediate Deep Learning:  

Recitation



Bernoulli Distribution
• Consider a single binary random variable                          For example, x 
can describe the outcome of flipping a coin:                        

Coin flipping: heads = 1, tails = 0.                         

• The probability of x=1 will be denoted by the parameter ¹, so that:

• The probability distribution, known as Bernoulli distribution,  can be 
written as:



Parameter Estimation 

• We can construct the likelihood function, which is a function of ¹. 

• Suppose we observed a dataset 

• Equivalently, we can maximize the log of the likelihood function: 

• Note that the likelihood function depends on the N observations xn only 
through the sum   

Sufficient 
Statistic



Parameter Estimation 
• Suppose we observed a dataset 

• Setting the derivative of the log-likelihood function w.r.t ¹ to zero, we 
obtain:

where m is the number of heads. 



Multinomial Variables
• Consider a random variable that can take on one of K possible mutually 
exclusive states (e.g. roll of a dice). 

• We will use so-called 1-of-K encoding scheme. 

•  If a random variable can take on K=6 states, and a particular 
observation of the variable corresponds to the state x3=1, then x will be 
resented as:  

1-of-K coding scheme:

• If we denote the probability of xk=1  by the parameter ¹k, then the 
distribution over x is defined as:



Multinomial Variables
• Multinomial distribution can be viewed as a generalization of Bernoulli 
distribution to more than two outcomes.

• It is easy to see that the distribution is normalized: 

and



Maximum Likelihood Estimation 
• Suppose we observed a dataset 

• We can construct the likelihood function, which is a function of ¹. 

• Note that the likelihood function depends on the N data points only 
though the following K quantities: 

which represents the number of observations of xk=1.   

• These are called the sufficient statistics for this distribution. 



Maximum Likelihood Estimation 

which is the fraction of observations for which xk=1.

• To find a maximum likelihood solution for ¹, we need to maximize the 
log-likelihood taking into account the constraint that  

• Forming the Lagrangian:  



Gaussian Univariate Distribution 
• In the case of a single variable x, the Gaussian distribution takes form:

which is governed by two parameters:

-  ¹ (mean) 
-  ¾2 (variance)

• The Gaussian distribution satisfies:



Multivariate Gaussian Distribution 
• For a D-dimensional vector x, the Gaussian distribution takes form:

and |§| denotes the determinant of §. 

which is governed by two parameters:

-  ¹ is a D-dimensional mean vector.  
-  § is a D by D covariance matrix.  

• Note that the covariance matrix is a symmetric positive definite 
matrix.   



Central Limit Theorem 
• The distribution of the sum of N i.i.d. random variables becomes 
increasingly Gaussian as N grows. 

• Consider N variables, each of which has a uniform distribution over the 
interval [0,1]. 

• Let us look at the distribution over the mean: 

• As N increases, the distribution tends towards a Gaussian distribution.  



Moments of the Gaussian Distribution
• The expectation of x under the Gaussian distribution: 

The term in z in the factor (z+¹) 
will vanish by symmetry. 



Moments of the Gaussian Distribution
• The second order moments of the Gaussian distribution: 

• The covariance is given by:

• Because the parameter matrix § governs the covariance of x under the 
Gaussian distribution, it is called the covariance matrix. 



Moments of the Gaussian Distribution
• Contours of constant probability density: 

Covariance 
matrix is of 
general form. 

Diagonal, axis-
aligned covariance 
matrix.

Spherical 
(proportional to 
identity) covariance 
matrix. 



Partitioned Gaussian Distribution
• Consider a D-dimensional Gaussian distribution:

• Let us partition x into two disjoint subsets xa and xb:

• In many situations, it will be more convenient to work with the 
precision matrix (inverse of the covariance matrix): 

• Note that ¤aa is not given by the inverse of §aa.



Conditional Distribution
• It turns out that the conditional distribution is also a Gaussian 
distribution: 

Linear function 
of xb.

Covariance does not 
depend on xb. 



Marginal Distribution
• It turns out that the marginal distribution is also a Gaussian distribution: 

• For a marginal distribution, the mean and covariance are most simply 
expressed in terms of partitioned covariance matrix.  



Conditional and Marginal Distributions



Maximum Likelihood Estimation 
• Suppose we observed i.i.d data

• We can construct the log-likelihood function, which is a function of 
¹ and §:

• Note that the likelihood function depends on the N data points only 
though the following sums: 

Sufficient Statistics



Maximum Likelihood Estimation 
• To find a maximum likelihood estimate of the mean, we set the 
derivative of the log-likelihood function to zero: 

and solve to obtain:

• Similarly, we can find the ML estimate of §:



Maximum Likelihood Estimation 
• Evaluating the expectation of the ML estimates under the true 
distribution, we obtain: 

• We can correct the bias by defining a different estimator: 

Unbiased estimate

Biased estimate

• Note that the maximum likelihood estimate of § is biased. 



Student’s t-Distribution 
• Consider Student’s t-Distribution 

where
Infinite mixture 
of Gaussians 

Sometimes called 
the precision 
parameter. 

Degrees of freedom



Student’s t-Distribution 
• Setting º = 1 recovers Cauchy distribution  
• The limit º ! 1  corresponds to a Gaussian distribution.  



Student’s t-Distribution 
• Robustness to outliners: Gaussian vs. t-Distribution. 



Student’s t-Distribution 
• The multivariate extension of the t-Distribution: 

where

• Properties: 



Mixture of Gaussians
•  When modeling real-world data, Gaussian assumption may not be 
appropriate. 

Single Gaussian Mixture of two 
Gaussians

• Consider the following example: Old Faithful Dataset



Mixture of Gaussians
• We can combine simple models into a complex model by defining a 
superposition of K Gaussian densities of the form:  

Component

Mixing coefficient

K=3

• Note that each Gaussian component has its own mean ¹k and 
covariance §k. The parameters ¼k are called mixing coefficients. 

• Mote generally, mixture models can comprise linear combinations of 
other distributions. 



Mixture of Gaussians
• Illustration of a mixture of 3 Gaussians in a 2-dimensional space: 

(a) Contours of constant density of each of the mixture components, 
along with the mixing coefficients

(b) Contours of marginal probability density  

(c) A surface plot of the distribution p(x). 



Maximum Likelihood Estimation
• Given a dataset D, we can determine model parameters ¹k. §k, ¼k by 
maximizing the log-likelihood function: 

Log of a sum: no closed form solution

• Solution: use standard, iterative, numeric optimization methods or the 
Expectation Maximization algorithm. 


