Multimodal Deep Learning

Paul Liang Machine Learning Department Carnegie Mellon University

https://www.cs.cmu.edu/~pliang/ pliang@cs.cmu.edu https://github.com/pliang279 @pliang279

Multimodal Artificial Intelligence

Multimodal Human Communication

Understanding human language and gestures

Healthcare Modalities

Medicine and healthcare

[Jaume et al., Modeling Dense Multimodal Interactions Between Biological Pathways and Histology for Survival Prediction. 2023] [Liang et al., Quantifying & Modeling Multimodal Interactions: An Information Decomposition Framework. NeurIPS 2023]

Multisensory Robotic Intelligence

Multisensor fusion in robotics

+ robustness

[Lee et al., Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks. ICRA 2019] [Liang et al., MultiBench: Multiscale Benchmarks for Multimodal Representation Learning. NeurIPS 2021]

Multimodal Machine Learning – Surveys, Tutorials and Courses

Foundations and Recent Trends in Multimodal Machine Learning

Paul Liang, Amir Zadeh and Louis-Philippe Morency

https://arxiv.org/abs/2209.03430

Tutorials: ICML 2023, CVPR 2022, NAACL 2022

Graduate-level courses:

Multimodal Machine Learning (12th edition) https://cmu-multicomp-lab.github.io/mmml-course/fall2022/

Advanced Topics in Multimodal ML

https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2023/

Definition

Modality refers to the way in which something expressed or perceived.

A dictionary definition...

Multimodal: with multiple modalities

A research-oriented definition...

Multimodal is the scientific study of

heterogeneous and interconnected data Connected + Interacting

Heterogeneous: Diverse qualities, structures and representations.

Abstract modalities are more likely to be homogeneous

Information present in different modalities will often show diverse qualities, structures, and representations.

A teacup on the right of a laptop in a clean room.

[Liang, Zadeh, and Morency. Foundations and Trends on Multimodal Machine Learning. ICML 2023, CVPR 2022, NAACL 2022 Tutorials]

Information present in different modalities will often show diverse qualities, structures, and representations.

A **teacup** on the **right** of a **laptop** in a **clean room**.

Distribution: discrete or continuous, support

{teacup, right, laptop, clean, room}

Information present in different modalities will often show diverse qualities, structures, and representations.

A teacup on the right of a laptop in a clean room.

Granularity: sampling rate and frequency

objects per image

words per minute

Information present in different modalities will often show diverse qualities, structures, and representations.

A teacup on the right of a laptop in a clean room.

Information: entropy and density

Information present in different modalities will often show diverse qualities, structures, and representations.

Information present in different modalities will often show diverse qualities, structures, and representations.

A teacup on the right of a laptop in a clean room.

Noise: uncertainty, signal-to-noise ratio, missing data

 $\mathsf{teacup} \to \mathsf{teacip}$

 $right \rightarrow rihjt$

Connected: Shared information that relates modalities

[Liang, Zadeh, and Morency. Foundations and Trends on Multimodal Machine Learning. ICML 2023, CVPR 2022, NAACL 2022 Tutorials]

Connected: Shared information that relates modalities

A teacup on the right of a laptop in a clean room.

Connected: Shared information that relates modalities

[Liang, Zadeh, and Morency. Foundations and Trends on Multimodal Machine Learning. ICML 2023, CVPR 2022, NAACL 2022 Tutorials]

Connected: Shared information that relates modalities

A teacup on the right of a laptop in a clean room.

Connected: Shared information that relates modalities

[Liang, Zadeh, and Morency. Foundations and Trends on Multimodal Machine Learning. ICML 2023, CVPR 2022, NAACL 2022 Tutorials]

Interacting: process affecting each modality, creating new response

Cross-modal Interaction Mechanics

Multimodal Machine Learning

What are the core multimodal technical challenges, understudied in conventional machine learning?

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

> This is a core building block for most multimodal modeling problems!

Individual elements:

It can be seen as a "local" representation or representation using holistic features

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

Definition: Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure

Most modalities have internal structure with multiple elements

Elements with temporal structure:

Other structured examples:

Definition: Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure

Sub-challenges:

Discrete Alignment

Discrete elements and connections

Continuous Alignment

Segmentation and continuous warping

Contextualized Representation

Alignment + representation

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure

Definition: Learning a generative process to produce raw modalities that reflects cross-modal interactions, structure and coherence

Sub-challenges:

Challenge 4: Generation

An astronaut riding a horse in the style of Andy Warhol.

A bowl of soup that is a portal to another dimension as digital art

Definition: Transfer knowledge between modalities, usually to help the target modality which may be noisy or with limited resources

Definition: Empirical and theoretical study to better understand heterogeneity, cross-modal interactions and the multimodal learning process

Sub-challenges:

[Liang, Zadeh, Morency, Foundations and Trends in Multimodal Machine Learning. Tutorials at ICML 2023, CVPR 2022, NAACL 2022]

Core Multimodal Challenges

Sub-Challenge: Representation Fusion

Definition: Learn a joint representation that models cross-modal interactions between individual elements of different modalities

Basic fusion:

From Additive to Multiplicative

- y: audience score
- x_A : percentage of smiling
- x_B : professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

$$y = w_0 + w_1 x_A + \epsilon$$

	Estimate	95% CI
<i>w</i> ₀	4.63	[4.20, 5.06]
W_1	1.20	[0.83, 1.57]

From Additive to Multiplicative

- y: audience score
- x_A : percentage of smiling
- x_B : professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

$$y = w_0 + w_1 x_A + w_2 x_B + \epsilon$$

	Estimate	95% CI	
w ₀	5.29	[4.86, 5.73]	
<i>w</i> ₁	1.19	[0.85, 1.53]	Positive effect
<i>W</i> ₂	-1.69	[-2.14, -1.24]	Negative effect

From Additive to Multiplicative

- *y*: audience score
- x_A : percentage of smiling
- x_B : professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

$$y = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

	Estimate	95% CI
w ₀	5.79	[5.29, 6.29]
W_1	0.68	[0.25, 1.11]
<i>W</i> ₂	-2.94	[-3.73, -2.15]
W ₃	1.29	[0.61, 1.97]

Basic Fusion – Additive Interactions

With unimodal encoders:

Modality A \bigwedge encoder f_A Modality B encoder f_B Additive fusion:

 $\boldsymbol{z} = \boldsymbol{w}_1 \boldsymbol{x}_A + \boldsymbol{w}_2 \boldsymbol{x}_B$

1-layer neural network can be seen as additive

Additive fusion:

 $\mathbf{z} = f_A(\mathbf{\Delta}) + f_B(\mathbf{O})$

It could be seen as an ensemble approach (late fusion)

Multiplicative Interactions

Simple multiplicative fusion:

$$\boldsymbol{z} = \boldsymbol{w}(\boldsymbol{x}_A \times \boldsymbol{x}_B)$$

Bilinear Fusion:

$$\boldsymbol{Z} = \boldsymbol{W}(\boldsymbol{x}_A^T \cdot \boldsymbol{x}_B)$$

[Jayakumar et al., Multiplicative Interactions and Where to Find Them. ICLR 2020]

Tensor Fusion

勜

Low-rank Tensor Fusion

[Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors. ACL 2018]

Low-rank Tensor Fusion

[Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors. ACL 2018]

Low-rank Tensor Fusion

[Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors. ACL 2018]

Gated Fusion

[Arevalo et al., Gated Multimodal Units for information fusion, ICLR-workshop 2017]

Modality-Shifting Fusion

Example with language modality:

Primary modality: language

Secondary modalities: acoustic and visual

[Wang et al., Words Can Shift: Dynamically Adjusting Word Representations Using Nonverbal Behaviors, AAAI 2019] [Rahman et al., Integrating Multimodal Information in Large Pretrained Transformers, ACL 2020]

Nonlinear Fusion

... but will our neural network learn the nonlinear interactions?

勜

Measuring Non-Additive Interactions

Projection from nonlinear to additive (using EMAP):

[Hessel and Lee, Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!, EMNLP 2020]

Measuring Non-Additive Interactions

	I-INT	I-SEM	I-CTX	T-VIS	R-POP	T-ST1	T-ST2	•
Nonlinear 🦛 Neural Network	90.4	69.2	78.5	51.1	63.5	71.1	79.9	•
Polynomial 🦛 Polykernel SVM	,91.3	,74.4	,81.5	50.8	_	72.1	,80.9	
Nonlinear 🦛 FT LXMERT	83.0	68.5	76.3	53.0	63.0	66.4	78.6	
Nonlinear 🦛 🗅 + Linear Logits	89.9	73.0	80.7	53.4	64.1	75.5	80.3	
Additive 🦛 Linear Model	90.4	72.8	80.9	51.3	63.7	75.6	76.1	
Best Model	91.3 [×]	74.4	81.5	53.4 [×]	64.2 [×]	75.5 [×]	80.9	5
Additive 🖛 🗸 + EMAP	91.1	74.2	81.3	51.0	~ 64.1	75.9	80.7	2

[Hessel and Lee, Does my multimodal model learn cross-modal interactions? It's harder to tell than you might think!, EMNLP 2020]

[Wortwein et al., Beyond Additive Fusion: Learning Non-Additive Multimodal Interactions, Findings-EMNLP 2022]

Fusion with Heterogeneous Modalities

Example: From feature fusion to early fusion

[Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021]

Fusion with Heterogeneous Modalities

Example: From feature fusion to early fusion

🐞 Language Technologies Institute

Dynamic Early Fusion

Idea: Deciding when to fuse in early fusion

[Xue and Marculescu, Dynamic Multimodal Fusion, arxiv 2022]

Dynamic Early Fusion

Fusion fully learned from optimization and data

1. Define basic representation building blocks

2. Define basic fusion building blocks

Concat fuse	Attention fuse	Add fuse
-------------	----------------	----------

3. Automatically search for composition using neural architecture search

[Xu et al., MUFASA: Multimodal Fusion Architecture Search for Electronic Health Records. AAAI 2021] [Liu et al., DARTS: Differentiable Architecture Search. ICLR 2019]

Heterogeneity-aware Fusion

Information transfer, transfer learning perspective

1a. Estimate modality heterogeneity via transfer

(Implicitly captures heterogeneity)

2a. Compute modality heterogeneity matrix

[Zamir et al., Taskonomy: Disentangling Task Transfer Learning. CVPR 2018] [Liang et al., HighMMT: Quantifying Modality & Interaction Heterogeneity for High-Modality Learning. TMLR 2022] Information transfer, transfer learning perspective

[Liang et al., HighMMT: Quantifying Modality & Interaction Heterogeneity for High-Modality Learning. TMLR 2022]

Kinetics dataset (a) headbangin e) robot dancin g) riding a bike

Adding more modalities should always help?

Modalities: RGB (video clips)

A (Audio features)

OF (optical flow - motion)

Dataset	Multi-modal	V@1	Best Uni	V@1	Drop
Kinetics	A + RGB	71.4	RGB	72.6	-1.2
	RGB + OF	71.3	RGB	72.6	-1.3
	A + OF	58.3	OF	62.1	-3.8
	A + RGB + OF	70.0	RGB	72.6	-2.6

But sometimes multimodal doesn't help! Why?

[Wang et al., What Makes Training Multi-modal Classification Networks Hard? CVPR 2020] [Wu et al., Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks. ICML 2022]

Information heterogeneity and unimodal biases

Finding: VQA models answer the question without looking at the image

Finding: Image captioning models capture spurious correlations between gender and generated actions.

Wrong

Right for the Wrong Reasons

Baseline: A **man** sitting at a desk with a laptop computer. Baseline: A **man** holding a tennis racquet on a tennis court.

[Goyal et al., Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering. CVPR 2017] [Hendricks et al., Women also Snowboard: Overcoming Bias in Captioning Models. ECCV 2018]

[Javaloy et al., Mitigating Modality Collapse in Multimodal VAEs via Impartial Optimization. ICML 2022] [Goyal et al., Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering. CVPR 2017]

Relevance heterogeneity

2 explanations for drop in performance:

- 1. Multimodal networks are more prone to overfitting due to **increased complexity**
- 2. Different modalities overfit and generalize at different rates

[Wang et al., What Makes Training Multi-modal Classification Networks Hard? CVPR 2020] [Wu et al., Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks. ICML 2022]

Relevance heterogeneity

Key idea 2: Simultaneously train unimodal networks to estimate OGR wrt each modality

÷

Reweight multimodal loss using unimodal OGR values

Allows to better balance generalization & overfitting rate of different modalities

[Wang et al., What Makes Training Multi-modal Classification Networks Hard? CVPR 2020] [Wu et al., Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks. ICML 2022]

Improving Robustness

Heterogeneity in noise

Tradeoffs between performance and robustness

Robustness \rightarrow rate of accuracy drops

[Liang et al., MultiBench: Multiscale Benchmarks for Multimodal Representation Learning. NeurIPS 2021]

Improving Robustness

Several approaches towards more robust models

Translation model Joint probabilistic model

[Ngiam et al., Multimodal Deep Learning. ICML 2011]
[Srivastava and Salakhutdinov, Multimodal Learning with Deep Boltzmann Machines. JMLR 2014]
[Tran et al., Missing Modalities Imputation via Cascaded Residual Autoencoder. CVPR 2017]
[Pham et al., Found in Translation: Learning Robust Joint Representations by Cyclic Translations Between Modalities. AAAI 2019

Sub-Challenge 1a: Representation Fusion

Definition: Learn a joint representation that models cross-modal interactions between individual elements of different modalities

70

Sub-Challenge: Representation Coordination

Learning with coordination function:

 $\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$

with model parameters θ_g , θ_{f_A} and θ_{f_B}

Sub-Challenge: Representation Coordination

Learning with coordination function:

$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

1 Cosine similarity: $g(\mathbf{z}_A, \mathbf{z}_B) = \frac{\mathbf{z}_A \cdot \mathbf{z}_B}{\|\mathbf{z}_A\| \|\mathbf{z}_B\|}$

with model parameters θ_g , θ_{f_A} and θ_{f_B}

勜
Sub-Challenge: Representation Coordination

Learning with coordination function:

 $\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$

with model parameters θ_g , θ_{f_A} and θ_{f_B}

② Kernel similarity functions:

$$g(\mathbf{z}_{A}, \mathbf{z}_{B}) = k(\mathbf{z}_{A}, \mathbf{z}_{B}) \begin{cases} \bullet \text{ Linear} \\ \bullet \text{ Polynomial} \\ \bullet \text{ Exponential} \\ \bullet \text{ RBF} \end{cases}$$

溯

Sub-Challenge: Representation Coordination

溯

Coordination with Contrastive Learning

Paired data:

(e.g., images and text descriptions)

Contrastive loss:

brings positive pairs closer and pushes negative pairs apart

Simple contrastive loss:

Example – Visual-Semantic Embeddings

Two contrastive loss terms:

 $\max\{0, \alpha + sim(\mathbf{z}_L, \mathbf{z}_V^+) - sim(\mathbf{z}_L, \mathbf{z}_V^-)\} + \max\{0, \alpha + sim(\mathbf{z}_V, \mathbf{z}_L^+) - sim(\mathbf{z}_V, \mathbf{z}_L^-)\}$

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, NeurIPS 2014]

Example – CLIP (Contrastive Language–Image Pre-training)

Positive and negative pairs:

Popular contrastive loss: InfoNCE

CLIP encoders (f_L and f_V) are great for language-vision tasks

[Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021]

Multimodal Fusion with Mutual Information

Assumption?

Information present in both modalities is most important for the downstream task

Colombo et al., Improving Multimodal Fusion via Mutual Dependency Maximization, EMNLP 2021

Contrastive Learning and Connected Modalities

[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]

Contrastive Learning and Mutual Information

InfoNCE: $\mathcal{L} = -\mathbb{E}\left[\log \frac{f(\mathbf{x}_{A}^{i}, \mathbf{x}_{B}^{i})}{\sum_{j=1}^{N} f(\mathbf{x}_{A}^{i}, \mathbf{x}_{B}^{j})}\right]$ critic function

Critic function *f* is trained to be a binary classifier distinguishing x_A , $x_B \sim p(x_A, x_B)$ vs x_A , $x_B \sim p(x_A)p(x_B)$

InfoNCE/CL:

- 'Captures' mutual information
- Optimizes a lower bound on mutual information

At optimal loss,
$$f^*(\mathbf{x}_A, \mathbf{x}_B) = \frac{p(\mathbf{x}_A, \mathbf{x}_B)}{p(\mathbf{x}_A)p(\mathbf{x}_B)}$$
.

Plugging f^* back into \mathcal{L} gives:

$$\mathcal{L}^* \geq \mathbb{E}\left[\log \frac{p(\mathbf{x}_A)p(\mathbf{x}_B)}{p(\mathbf{x}_A, \mathbf{x}_B)}N\right] = -I(X_A, X_B) + \log N$$

In other words:

 $I(X_A, X_B) \ge \log N - \mathcal{L}^*$

[Oord et al., Representation Learning with Contrastive Predictive Coding. 2018]

Multiview Redundancy and Contrastive Learning

[Tian et al., What makes for Good Views for Contrastive Learning? NeurIPS 2020] [Tosh et al., Contrastive Learning, Multi-view Redundancy, and Linear models. ALT 2021]

How much information should be shared?

 $I(\mathbf{v_1};\mathbf{v_2})$

transfer

performance

Multi-view redundancy may not hold for multimodal problems!

Not enough signal

Y

bits

Open

challenges

too much

noise

 $I(\mathbf{v_1};\mathbf{v_2})$

Sub-Challenge 1c: Representation Fission

Definition: Learning a new set of representations that reflects multimodal internal structure such as data factorization or clustering

Quantifying Interactions

And he I don't think he got mad when hah

These interactions can be estimated efficiently:

Language:

Vision:

Jaze aversion

Acoustic:

Sentiment

 $R U_{\ell} U_{av} S$

Language/Agreement

Multimodal Transformer

Multiplicative/Transformer

Also matches human judgment of interactions, and other sanity checks on synthetic datasets Can also be used to choose most appropriate models – can they be used to better train/design new models?

[Liang et al., Quantifying & Modeling Feature Interactions: An Information Decomposition Framework, NeurIPS 2023]

Carnegie Mellon Universit

Factorized Contrastive Learning

Modeling task-relevant unique information

[Liang et al., Factorized Contrastive Learning: Going Beyond Multi-view Redundancy, NeurIPS 2023]

Factorized Contrastive Learning

Modeling task-relevant unique information

Approximate task-relevance Y using multi-view data augmentations New scalable lower and upper bounds on mutual information

[Liang et al., Factorized Contrastive Learning: Going Beyond Multi-view Redundancy, NeurIPS 2023]

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

Future Direction: Heterogeneity

Homogeneity vs Heterogeneity

Examples:

Arbitrary tokenization

Beyond differentiable interactions

Causal, logical, brain-inspired

Theoretical studies

Future Direction: High-modality

https://github.com/pliang279/MultiBench

Examples:

Non-parallel learning

Limited resources

Medical

Future Direction: Long-term

Short-term

Examples:

Compositionality

Memory

Personalization

Future Direction: Interaction

Social-IQ

https://www.thesocialiq.com/

Social Intelligence

Examples:

Multi-Party

Causality

Future Direction: Real-world

MultiViz

https://github.com/pliang279/MultiViz

Healthcare Decision Support

Intelligent Interfaces and Vehicles Online Learning and Education

Examples:

Robustness

Fairness

Generalization

Interpretation

) @pliang279