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Sequences

50 years ago, the fathers of artificial intelligence convinced
everybody that logic was the key to intelligence. Somehow we
had to get computers to do logical reasoning. The alternative
approach, which they thought was crazy, was to forget logic and
try and understand how networks of brain cells learn things.
Curiously, two people who rejected the logic based approach to
Al were Turing and Von Neumann. If either of them had lived I
think things would have turned out differently... now neural
networks are everywhere and the crazy approach is winning.
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Classical Models for Sequence Prediction

’_ Transition Probabilities Determined
with Triphone Strcture

e Sequence prediction was classically

handled as a structured prediction
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Two Key Ingredients

Neural Embeddings
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Hinton, G., Salakhutdinov, R. "Reducing the Dimensionality of Data with Neural Networks." Science (2006)

Mikolov, T., et al. "Recurrent neural network based language model." Interspeech (2010)
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Language Models

context target
the <cat sat on the mat
W5 W4 W3 W2 Wt Wt
the cat sat on the rug
the cat sat on the hat
the cat sat on the dog
the «cat sat on the the
the cat sat on the  sat
the «cat sat on the robot
the cat sat on the printer

P(wt|wt—1a Wt—2, - . -wt—5)
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Slide Credit: Piotr Mirowski



context

target

cat
chases

cheese

eats

mat

milk
of

on

paws

rat
sat

the

cat

rat

the cat sat on the mat
the cat drinks milk
the dog chases the cat
the paws of the cat

the cat chases the rat
the rat eats cheese
the rat eats the mat

Slide Credit; Piotr MirowskKi
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Chain Rule

T

P(wy,wo,...,wp_1,wy) = H P(w|wy_1, ws_o, ..., w1)
t=1

the P(wl)

the cat P(’w2 wl)

the cat sat P(w3 w27w1)

the cat sat on P(w4 w37w2,w1)

the cat sat on the P(w5 Wy, W3, W2, wl)

the <cat sat on the mat P (UJG w5,w4,’w37w27w1)

Slide Credit: Piotr Mirowski



Key Insight: Vectorizing Context

p(wtlwla <o ,/lUt_l) — p@(wt‘fe(wly S 7wt—1>)

\ @ » -

P(wlc)

the cat the | €50 (v,c) mat

D=100

-

V>10k words

Bengio, Y. et al,, “A Neural Probabilistic Language Model", JMLR (2001, 2003) _ - _ .
Mnih, A., Hinton, G., “Three new graphical models for statistical language modeling”, ICML 2007 Slide Credit: Piotr Mirowski



Recurrent Neural Network Language Models

[Jeffrey L ElIman (1991) ° Distributea r‘épresemanons simple recurrent network%smd grammatical structure”, Machine Learning;
Tomas I\/I|kolgv'et al. (2010) “Recurrent neural network based Ianguage model” INTERSPEEC/—I}
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Recurrent Neural Network Language Models

k’ ~~s‘~
1 __pripd RN
P AN
_— “
&)
o
cat sat

Slide Credit: Piotr Mirowski



Recurrent Neural Network Language Models

z'o ~~s~~,
1 r@-ifL
%
o
&)
®
o
sat on

Slide Credit: Piotr Mirowski



Recurrent Neural Network Language Models
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Recurrent Neural Network Language Models
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What do we Optimize?

0" = arg max Eymdata log By(wy, . .., wr)



Recurrent Neural Network Language Models
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Recurrent Neural Network Language Models

cat sat on the mat
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Abstract

We present a joint language and transla-
tion model based on a recurrent neural net-
work which predicts target words based on
an unbounded history of both source and tar-
‘The weaker independence as-

ing algorithm and demonstrate its effective-
ness empirically. Our joint model builds on a
‘well known recurrent neural network language:
‘model (Mikolov, 2012) augmented by a layer
of additional inputs from the source language.
‘We show compelitive accuracy compared to
the traditional channel model features. Our
best results improve the output of a system
trained on WMT 2012 French-English data by
upto 1.5 BLEU, and by 1.1 BLEU on average
across several test sets

Introduction

Recently, several feed-forward neural network-
based language and translation models have
achieved impressive accuracy improvements on sta-
tistical machine translation tasks (Allauzen et al
2011; Le et al,, 2012b; Schwenk et al, 2012). In this
paper we focus on recurrent neural network archi-
tectures, which have recently advanced the state of
the art in language modeling (Mikolov ct al., 201
Mikolov et al., 2011a; Mikolov, 2012), outperform-
ing mult-layer feed-forward based networks in both
perplexity and word error rate in speech remgnl(inn
(Arisoy et al., 2012; Sundermeyer et al, 2013).

‘major attraction of recurrent s her

predictions are based on an unbounded history of
previous words. This is in contrast to feed-forward
networks as well as conventional n-gram models,
both of which are limited 10 fixed-length contexts.
Building on the success of recurrent architectures,
we base our joint language and translation model
on an extension of the recurrent neural network lan-
‘guage model (Mikolov and Zweig, 2012) that intro-
duces a layer of additional inputs (§2).

Most previous work on neural networks for
speech recognition or machine translation used a
rescoring setup based on n-best lists (Arisoy et al.,
2012; Mikolov, 2012) for evaluation, thereby side
stepping the algorithmic and engineering challenges
of direct decoder-integration.! Instead, we exploit
lattices, which offer a much richer representation
of the decoder output, since they compactly encode
an exponential number of translation hypotheses in
polynomial space. In contrast, n-best lists are typi-
cally very redundant, representing only a few com-
binations of top scoring arcs in the lattice. A major
challenge in lattice rescoring with a recurrent neural
network model is the effect of the unbounded history
on search since the usual dynamic programming as-
sumptions which are exploited for efficiency do not
hold up anymore. We apply a novel algorithm to the
task of rescoring with an unbounded language model
and empirically demonstrate its effectiveness (§3).

algorithm proves robust, leading to signif-
icant improvements with the recurrent neural net-
work language model over a competitive n-gram
baseline across several language pairs. We even ob-
serve consistent gains when pairing the model with a
large n-gram model trained on up to 575 times more

potential to capture long-span dependencies since

1044

ing latices with a fed-forward network-based model.

Prcesings o e 2013 Copfeence n EmpiriclMethode n Nonral L Procesingpaes 10441054,

‘ashinglon, USA, 18-21 October 2013. ©2013 Association for Computati
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Recurrent Continuous Translation Models
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Abstract

We introduce a class of probabilistic con-
tinuous wanslation models called Recur-
rent Continuous Translation Models that are
purely based on continuous representations
for words, phrases and sentences and do not

ties, linguistic or otherwise, they do not share statis-
tical weight in the models” estimation of their trans-
lation probabilities. Besides ignoring the similar-
ity of phrase pairs, this leads to general sparsity is-
sucs. The estimation is sparse or skewed for the
large number of rare or unseen phrase pairs, which
in the length of the phrases, and

rely on al phr
The modes hve & generation and a condi-
tioning aspect. The generation of the transla-
tion is modelled with 2 target Recurrent Lan-
‘guage Model, whereas the conditioning on the
source sentence is modelled with a Convolu-
tional Sentence Model. Through various ex-
periments, we show first that our models ob-
tain a perplexity with respect 1o gold transla-
tions that is > 43% lower than that of state-
of-the-art alignment-based translation models.
Secondly, we show that they are remarkably
sensitive to the word order, syntax, and mean-
ing of the source sentence despite lacking
alignments. Finally we show that they matcha
state-of-the-art system when rescoring 7-best
lists of translations.

1 Introduction

In most statistical approaches to machine transla-
tion the basic units of translation are phrases that are
composed of one or more words. A crucial com-
ponent of translation systems are models that esti-
mate translation probabilities for pairs of phrases,
one phrase being from the source language and the
other from the target language. Such models count
phrase pairs and their occurrences as distinct if the
surface forms of the phrases are distinct. Althou

distint phrase pairs often shere significant similari-

1700

the generalisation to other domains is often limited.

Continuous representations have shown promise
at tackling these issues. Continuous representations
for words are able to capture their morphological,
syntactic and semantic similarity (Collobert and We-
ston, 2008). They have been applied in continu-
ous language models demonsirating the ability to

ity s £.the

art performance (Bengio et al., 2003; Mikolov et
al,, 2010). Word representations have also shown
a marked sensitivity to conditioning information
(Mikolov and Zweig, 2012). Continuous
sentations for characters have been deployed in
character-level language models demonstrating no-
table language generation capabilities (Sutskever et
al., 2011). Continuous representations have also
been constructed for phrases and sentences. The rep-
resentations are able to carry similarity and task de-
pendent information, c.g. sentiment, paraphrase or
dialogue labels, significantly beyond the word level
and to accurately predict labels for 2 highly diverse
range of unseen phrases and sentences (Grefenstette
etal., 2011; Socher et al., 2011; Socher et al., 2012;
Hermann and Blunsom, 2013; Kalchbrenner and
Blunsom, 2013).

Phrase-based continuous translation models were
first proposed in (Schwenk et al., 2006) and re-

rocesdings o the 2013 Confrence on Enpirica Methods n Natral Language Processng, pages 1700-1709,

fashinglon, USA, 18-21 October 2013. ©2013 Association for Computatior
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Abstract

In this paper, we propose a novel neu-
ral network model called RNN Encoder—

Decoder that consists of two recurrent
neural networks (RNN). One RNN en-
codes a sequence of symbols into a fixed-
Length vector representation, and the other
decodes the representation into another se-
quence of symbols. The encoder and de-
coder of the proposed model are jointly
trained to maximize the conditional prob-
ability of a target sequence given a source
sequence. The performance of a statisti-
cal machine translation system s empiri-
cally found to improve by using the con-
ditional probebilities of phrase pairs com-
puted by the RNN Encoder-Decoder as an
additional feature in the existing log-linear
model. Qualitatively, we show that the
proposed model leans  semantically and
syntactically meaningful representation of
linguistic phrases.

1 Introduction

Deep neural networks have shown great success in
various applications such as objection recognition
(see, e.g.. (Krizhevsky etal., 2012)) and speech
recogaition (see, e.g., (Dahl etal, 2012)). Fur-
thermore, many recent works showed that neu-
ral networks can be successfully used in a num-
ber of tasks in natural language processing (NLP).
These include, but are not limited to, language
‘modeling (Bengio et al., 2003), paraphrase detec-
tion (Socher etal., 2011) and word embedding ex-
traction (Mikolov et al, 2013). In the field of sta-
tistical machine translation (SMT), deep neural
networks have begun to show promising results.
(Schwenk, 2012) summarizes a successful usage
of feedforward neural networks in the framework
of phrase-based SMT system.

Along this line of research on using neural net-
works for SMT, this paper focuses on a novel neu-
ral network architecture that can be used as a part
of the conventional phrase-based SMT system.
‘The proposed neural network architecture, which
we will refer to as an RNN Encoder-Decoder, con-
sists of two recurrent neural networks (RNN) that
act as an encoder and a decoder pair. The en-
coder maps a variable-length source sequence to a
fixed-length vector, and the decoder maps the vec-
tor representation back 10 a variable-length target
sequence. The two networks are trained jointly to
‘maximize the conditional probability of the target
sequence given a source sequence. Additionally,
we propose to use a rather sophisticated hidden
unit in order to improve both the memory capacity
and the ease of training

The proposed RNN Encoder-Decoder with a
novel hidden unit is empirically evaluated on the
task of translating from English to French. We
train the model to learn the translation probabil-
ity of an English phrase to & corresponding French
phrase. The model is then used as a part of a stan-
dard phrase-based SMT system by scoring cach
‘phrase pair in the phrase table. The empirical eval-
uation reveals that this approach of scoring phrase
pairs with an RNN Encoder-Decoder improves
the translation performance.

We qualitatively analyze the trained RNN
Encoder-Decoder by comparing its phrase scores
with those given by the existing translation model.
The qualitative analysis shows that the RNN
Encoder-Decoder is better at capturing the lin-
guistic regularities in the phrase table, indirectly
explaining the quantitative improvements in the
overall translation performance. The further anal-
ysis of the model reveals that the RNN Encoder—
Decoder learns a continuous space representation
of a phrase that preserves both the semantic and
syntactic structure of the phrase.

, et al. “Recurrent Continuous Translation Models.” EMNLP (2013)

Sequence to Sequence Learning
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Abstract

Deep Neural Networks (DNNs) are powerful models that have achieved excel-
lent performance on difficult learning tasks. Although DNNs work well whenever
large labeled training sets are available, they cannot be used to map sequences to
sequences. In this paper, we present a general end-to-end approach to sequence
learning that makes minimal assumptions on the sequence structure. Our method
uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence
10 a vector of a fixed dimensionality, and then another deep LSTM to decode the
target sequence from the vector. Our main result is that on an English to French
translation task from the WMT" 14 dataset, the translations produced by the LSTM
achieve a BLEU score of 34.8 on the entire test set, where the LSTM’s BLEU
score was penalized on out-of-vocabulary words. Additionally, the LSTM did not
have difficulty on long sentences. For comparison, a phrase-based SMT system
achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM
10 rerank the 1000 hypotheses produced by the aforementioned SMT system, its
BLEU score increases to 36.5, which is close to the previous best result on this
task. The LSTM also learned sensible phrase and sentence representations that
are sensitive to word order and are relatively invariant to the active and the pas-
sive voice. Finally, we found that reversing the order of the words in all source
not ntences) it

because doing so introduced many short term dependencies between the source
and the & tence which made imi blem easier.

1 Introduction

Desp Neural Networks (DNNs) are xtrrnely powerful machine leaming modes tiat ahieve ex-
13, 7] and visual

miton [13, 6, 21, 20]. DNNs ae powerful hecause they can perform arbitrary paralle] computation
for a modest number of steps. A surprising example of the power of DNNs is their ability to sort
N N-bit numbers using only 2 hidden layers of quadratic size [27]. So, while neural networks are
related to conventional statistical models, they leam an intricate computation. Furthermore, large
DNN can be trained 1 has enough
information to specify the network’s parameters. Thus, if there exists a parameter setting of a large.
DNN that achieves good results (for example, because humans can solve the task very rapidly),
supervised will find these parameters and solve the problem.

Despite their flexibility and power, DNNs can only be applied to problems whose inputs and targets
can be sensibly encoded with vectors of fixed dimensionality. It is a significant limitation, since
‘many important problems are best expressed with sequences whose lengths are not known a-priori.
For example, speech recognition and machine translation are sequential problems. Likewise, ques-
tion answering can also be seen as mapping a sequence of words representing the question to a

"Joint Language and Translation Modeling with Recurrent Neural Networks." EMNLP (2013)

3. Cho, K, et al. “Learning Phrase Representations using RNN Encoder-Decoder for Statistical MT.” EMNLP (2014)

4. Sutskever, |., et al.

“Sequence to Sequence Learning with Neural Networks.” NIPS (2014)



Seq2Seq

Target sequence
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Decoding in a Nutshell (Beam Size 2)
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Code

Source:

https:.//github.com/keveman/tensorflow-

tutorial/blob/master/PTB%20Word%20Lanquage¥%20Modeling.ipynb

class LSTMCell(object):
def init (self, state_size):
self.state _size = state_size
self.W f = tf.Variable(self.initializer())

self.W i = tf.Variable(self.initializer())
self.W o = tf.Variable(self.initializer())
self.W C = tf.Variable(self.initializer())
self.b f = tf.Variable(tf.zeros([state _size]))
self.b i = tf.Variable(tf.zeros([state _size]))
self.b o = tf.Variable(tf.zeros([state size]))

self.b:C = tf.Variable(tf.zeros([state size]))
def call (self, x t, h t1, C_tl1):

X = tf.concat(1l, [h tl, x t])
f t = tf.sigmoid(tf.matmul (X, self.W f) + self.b f)
it = tf.sigmoid(tf.matmul(X, self.W i) + self.b i)

ot = tf.sigmoid(tf.matmul(X, self.W o) + self.b o)
Ctilde t = tf.tanh(tf.matmul(X, self.W C) + self.b C)
Ct=ft*Ctl+it*cCtilde t
ht=o0ot * tf.tanh(C_t)
return h t, C_t
def initializer(self):
return tf.random uniform([2*self.state size, self.state size],
-0.1, 0.1)



Model Runs

Vicious Cycle

Loss Goes
Down

Arch Search / Hyper Params
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(Some) Tricks of the Trade

Long sequences?
o Attention
o Bigger state
Can't overfit?
o Bigger hidden state
o Deep LSTM + Skip Connections
Overfit?
o Dropout + Ensembles
Tuning
o Keep calm and decrease your learning rate
o Initialization of parameters is critical (in seg2seq we used U(-0.05,
0.05))
o Clip the gradients!
m E.g if |[grad|| > 5: grad = grad/||grad|| " 5



Applications



Machine Translation

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45
Baseline System [29] 55.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81
af 18r O | was given a card by her in the garden
3r OMary admires John 10r O In the garden , she gave me a card
O She gave me a card in the garden
2t OMary is in love with John
5 -
1 =
o of
OMary respects John
el OdJohn admires Mary
-5r O She was given a card by me in the garden
-2 OdJohn is in love with Mary
O In the garden, | gave her a card
-3r -10}
_4 -
5L OJohn respects Mary o O | gave her a card in the garden
_6 1 1 L 1 1 1 J _20 1 L 1 1 1 1 J
-8 -6 -4 -2 2 4 6 8 10 -15 -10 -5 0 5 10 15 20

Sutskever, |., et al. “Sequence to Sequence Learning with Neural Networks.” NIPS (2014)



1.

2.

Machine Translation: Concerns

e Using Language Models [1]
e OOV words [2] jol i _

e Sequence length

<
"Language Model
Rescoring"
IR
’
Lo gtM)
A ’

y<D

un\<unk>chat

un <unk>chat

"Candidate Sentences"
+
Translation Model Scores

(a) Shallow Fusion (Sec. 4.1) (b) Deep Fusion (Sec. 4.2)

cute_

Gulcehre, C., et al. "On using monolingual corpora in neural machine translation." arXiv (2015).

Luong, T., and Manning, C. "Achieving open vocabulary neural MT with hybrid word-character models." arXiv (2016).



Image Captioning

P(English | French)

pP(English | Image)

Vinyals, O., et al. "Show and Tell: A Neural Image Caption Generator." CVPR (2015).
Mao, J., et al. "Deep captioning with multimodal recurrent neural networks (m-rnn).” ICLR (2015).
Karpathy, A., Li, F., “Deep visual-semantic alignments for generating image descriptions.” CVPR (2015)

Kiros, Zemel, Salakhutdinov, “Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models”, TACL 2015



Image Captioning

A cake
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Image Captioning
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Image Captioning

- - a wooden table and chairs
L .
a car is parked in arranged in a room .

the middle of nowhere .

- -

a little boy with a bunch

a ferry boat on a marina |
of friends on the street .

with a group of people .




Image Captioning

Human: A close up of two
bananas with bottles in the
background.

BestModel: A bunch of bananas
and a bottle of wine.



Image Captioning

Human: A woman holding up a
yellow banana to her face.

BestModel: A woman holding a
banana up to her face.




Image Captioning

Human: A man outside cooking
with a sub in his hand.

BestModel: A man is holding a

sandwich in his hand.




Image Captioning

Human: Someone is using a
small grill to melt his sandwich.

BestModel: A person is cooking
some food on a grill.



Image Captioning

Human: A blue, yellow and red
train travels across the tracks
near a depot.

BestModel: A blue and yellow
train traveling down train
tracks.




Learning to Execute

e One of the first (modern) examples of learning algorithms

® 2014--7?7?7? "era of discovery” — Apply seqgzaseq to everything

Input:
j=8584
for x in range (8):
3+=920
b=(1500+7)
print ( (b+7567))
Target: 25011.

Input:

i=8827

c=(i-5347)

print ((c+8704) if 2641<8500 else 5308)
Target: 12184.

Input:

vgppkn

sqdvfljmnc
y2vxdddsepnimcbvubkomhrpliibtwztbljipcc
Target: hkhpg

Zaremba, W., Sutskever, |. “Learning To Execute.” arxiv (2014).



Seq2Seq - Limitations

e Fixed Size Embeddings are easily overwhelmed by long inputs or

long outputs

40t

35}

BLEU score

25
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e—e baseline (33.3) | : f
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Q : : :
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M 10} — RNNsearch-50 |................ s ol e S TR -
----- RNNsearch-30 | | ; o
5H — - RNNenc-50 f[----oooomeenne s s e o RN s s < e .
-+ - RNNenc-30 O
0 . ; i | i
0 10 20 30 40 50
Sentence length
204 I7 l8 1I2 1|7 2.2 2I8 3|5 7I9

test sentences sorted by their length

Sutskever, |., et al. “Sequence to Sequence Learning with Neural Networks.” NIPS (2014)

Bahdanau, D., et al. “Neural Machine Translation by Jointly Learning to Align and Translate.” ICLR (2015)
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Attention



Seq235e(q - The issue with long inputs

@® Same embedding informs
the entire output

@® Needs to capture all the

information about the input
regardless of its length

> = > » > > >

r .ttt t t 1

A B C D X Y Z

N

_>><
_’_<
—

Is there a better way to pass the information from encoder to the
decoder ?



Seq2Seq with Attention
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Bahdanau, D., et al. “Neural Machine Translation by Jointly Learning to Align and Translate.” ICLR (2015)
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Seq2Seq with Attention

e A different embedding computed for every output step

e

Attention
Based
Embedding

—
_’_<
—»

Encoder f(input, hy) Decoder



Seq2Seq with Attention

e A different embedding computed for every output step

Attention
Based
Embedding

Encoder f(input, hy) Decoder



Seq2Seq with Attention

e A different embedding computed for every output step
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Seq2Seq with Attention

e Embedding used to predict output, and compute next

hidden state
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Seq2Seq with Attention

e Embedding used to predict output, and compute next

hidden state
X Y Z \_%J
! I

Attention
Based
Embedding

?>> hy =% >
1 //2
1 T 1 [ 1 1
A B C D - X Y Z
Encoder f(input, hy) Decoder

@ Attention arrows for step 1 omitted



Seq2Seq with Attention

e Embedding used to predict output, and compute next

hidden state

Attention X Y ‘Z\ L%_l

Based

Embedding L i

~—
L
P T 1 1 e i M I
A B C D - X Y Z
Encoder f(input, h3) Decoder

@ Attention arrows for steps 1 and 2 omitted



Attention Based Embedding

e Linear blending of embedding RNN states e, e, e; e4is a
natural choice

e How to produce the coefficients (attention vector) for
blending ?
o Content based coefficients based on query state h; and

embedding RNN states e, e, e; e,



Dot product Attention

e Inputs: “l am a cat.”
e Input RNN states: e; e, e; e,
e Decoder RNN state at step i (query): h;

e Compute scalars h;Te,, h,Te,, h,Te;, h,Te, representing

similarity / relevance between encoder steps and query.

e Normalize [h;"e4, h;Te,, h;Te;, h,Te, ] with softmax to

produce attention weights, e.g. [0.0 0.05 0.9 0.095]

X = T <




Content Based Attention

uj = thanh(Wlej + Wad) je(1,...,n)
aj = softmax(u;) je((,....n)

n
/_ - -
d = E a;e
Jj=1

Graves, A., et al. “Neural Turing Machines.” arxiv (2014)

Weston, J., et al. “Memory Networks.” arxiv (2014)



Other strategies for attention models

e Tensored attention
o Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches to Attention-
based Neural Machine Translation.” EMNLP’15.

e Multiple heads

e Pyramidal encoders
o William Chan, Navdeep Jaitly, Quoc Le, Oriol Vinyals. “Listen Attend and Spell”. ICASSP 2015.

e Hierarchical Attention

o Andrychowicz, Marcin, and Karol Kurach. "Learning efficient algorithms with hierarchical attentive
memory." arXiv preprint arXiv:1602.03218 (2016).

e Hard Attention

o Xu, Kelvin, et al. “Show, attend and tell: Neural image caption generation with visual attention.”
ICML 2015



