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Graphical Models

 Probabilistic graphical models provide a powerful framework for
representing dependency structure between random variables.

« Graphical models offer several useful properties:

- They provide a simple way to visualize the structure of a probabilistic
model and can be used to motivate new models.

- They provide various insights into the properties of the model,
including conditional independence.

- Complex computations (e.g. inference and learning in sophisticated
models) can be expressed in terms of graphical manipulations.



Graphical Models

» A graph contains a set of nodes (vertices) connected by links (edges or arcs)

L1

X
i In a probabilistic graphical model, each node

T2 represents a random variable, and links represent
probabilistic dependencies between random variables.

» The graph specifies the way in which the joint
distribution over all random variables decomposes
into a product of factors, where each factor

&g depends on a subset of the variables.

» Two types of graphical models:

- Bayesian networks, also known as Directed Graphical Models (the

links have a particular directionality indicated by the arrows)
- Markov Random Fields, also known as Undirected Graphical Models

(the links do not carry arrows and have no directional significance).

» Hybrid graphical models that combine directed and undirected graphical
models, such as Deep Belief Networks. ]



Bayesian Networks

* Directed Graphs are useful for expressing causal relationships between
random variables.

- Let us consider an arbitrary joint distribution p(a, b, ¢) over three
random variables a,b, and c.

 Note that at this point, we do not need to specify anything else about
these variables (e.g. whether they are discrete or continuous).

By application of the product rule of probability (twice), we get
p(a, b, c) = p(cla, b)p(a,b) = p(cla, b)p(bla)p(a)

» This decomposition holds for any choice of the joint distribution.



Bayesian Networks

By application of the product rule of probability (twice), we get

p(a, b, c) = p(cla, b)p(a, b) = p(c|a, b)p(bla)p(a)
» Represent the joint distribution in terms of a simple graphical model:

a - Introduce a node for each of the random variables.
b - Associate each node with the corresponding
conditional distribution in above equation.

- For each conditional distribution we add directed
links to the graph from the nodes corresponding
to the variables on which the distribution is
conditioned.

* Hence for the factor p(c|a, b), there will be links from nodes a and b to
node c.

» For the factor p(a), there will be no incoming links.



Bayesian Networks

By application of the product rule of probability (twice), we get

p(a,b,c) = p(cla, b)p(a,b) = p(c|a, b)p(bla)p(a)
* If there is a link going from node a to node b, then we say that:

- node a is a parent of node b.

1 - node b is a child of node a.

 For the decomposition, we choose a specific
ordering of the random variables: a,b,c.

« If we chose a different ordering, we would get a
different graphical representation (we will come
back to that point later).

 The joint distribution over K variables factorizes:

p(x1,...,2x) =pl@r|r1, . s TK—-1)...0(T2|x1)P(21)
» If each node has incoming links from all lower numbered nodes, then the
graph is fully connected; there is a link between all pairs of nodes. 0



Bayesian Networks

» Absence of links conveys certain information about the properties of the
class of distributions that the graph conveys.

 Note that this graph is not fully connected
(e.g. there is no link from x4 to x,).

 The joint distribution over x4,...,x; can be
written as a product of a set of conditional
distributions.

p(x1,...,27) = p(x1)p(x2)p(zs)p(za|z1, T2, 23)
p(xs|z1, 23)p(T6|Ta)p(T7| T4, T5)

 Note that according to the graph, x5 will be
conditioned only on x4 and xa.



Factorization Property

 The joint distribution defined by the graph is given by the product of a
conditional distribution for each node conditioned on its parents:

p(x) = | | p(axIpay,)
k=1

where pa, denotes a set of parents for the node x,.

« This equation expresses a key factorization
property of the joint distribution for a directed
graphical model.

 Important restriction: There must be no
directed cycles!

« Such graphs are also called directed acyclic graphs (DAGs).



Ancestral Sampling

- Consider a joint distribution over K random variables p(x1, xo, ..., Tx)
that factorizes as:

p(x) = || p(xxlpay)

« Qur goal is draw a sample from this distribution.

« Start at the top and sample in order.

T1 ~ p(x1 The parent
/ their sampled
values

Ty ~ D 332; variables are set to
)
|
|

- To obtain a sample from the marginal distribution, e.g. p(x», x5), we sample
from the full joint distribution, retain 7. 7-. and discard the remaining values.



Generative Models

 Higher-level nodes will typically represent latent (hidden) random variables.
« The primary role of the latent variables is to allow a complicated distribution

over observed variables to be constructed from simpler (typically exponential
family) conditional distributions.

Generative Model of an Image  ° Object identity, position, and orientation

have independent prior probabilities.
Object Position Orientation

« The image has a probability distribution
that depends on the object identity,
position, and orientation (likelihood
function).

P(Im,Ob, Po,Or) = P(Im|Ob, Po,Or)P(Ob)P(Po)P(Or)
\ J \\ J

Image Y Y
Likelihood Prior

» The graphical model captures the causal process, by which the observed
data was generated (hence the name generative models). 10




Discrete Variables

» We now examine the discrete random variables.
» Assume that we have two discrete random variables x, and x,, each of
which has K states.

X1 X K K
O .O p(xa,xalp) = [ ] ] ] wit=*
k=11=1

 Using 1-of-K encoding, we denote the probability of observing both x4,=1,
X5=1 by the parameter p,;, where x4, denotes the ki" component of x;
(similarly for x,).

« This distribution is governed by K2 - 1 parameters.

 The total number of parameters that must be specified for an arbitrary
joint distribution over M random variables is KM-1 (corresponds to a fully
connected graph).

« Grows exponentially in the number of variables M! 11



Discrete Variables

 General joint distribution: K2-1 parameters.

X1 X2 K
(OO——()  vxuxolp) =] [T+

k=11[1=1

 Independent joint distribution: 2(K-1) parameters.

X1 X2 K K
O O seaxelw = [ L
k=1 =1

« We dropped the link between the nodes, so each variables is described
by a separate multinomial distribution.

12



Discrete Variables

* In general:

- Fully connected graphs have completely general distributions and
have exponential KM-1 number of parameters (too complex).

- If there are no links, the joint distribution fully factorizes into the
product of the marginals, and has M(K-1) parameters (too simple).

- Graphs that have an intermediate level of connectivity allow for
more general distributions compared to the fully factorized one,
while requiring fewer parameters than the general joint
distribution.

* Let us look at the example of the chain graph.

13



Chain Graph

e Consider an M-node Markov chain:

» The marginal distribution p(x; ) requires K-1 parameters.

- The remaining conditional distributions p(x;|x; _1),7 = 2
require K(K-1) parameters.

oM

« Total number of parameters: K-1 + (M-1)(K-1)K, which is quadratic
in K and linear in the length M of the chain.

* This graphical model forms the basis of a simple Hidden Markov
Model.

14



Parameterized Models

 \We can use parameterized models to control exponential growth in the

number of parameters.
If x1,...,xps arediscrete, K-state
T1 T M variables, p(y = 1|z1,...,2Zn)
-------------- in general has O(KM) parameters.

« We can obtain a more parsimonious form of the
conditional distribution by using a logistic function
acting on a linear combination of the parent
variables:

M
ply=1lz1,....,x0) =0 (wo - szaz@> = o(w'x)

=1
 This is a more restricted form of conditional distribution, but it requires

only M+1 parameters (linear growth in the number of parameters).
15



Linear Gaussian Models

« So far we worked with joint probability distributions over a set of discrete
random variables (expressed as nodes in directed acyclic graphs).

« We now show how a multivariate Gaussian distribution can be
expressed as a directed graph corresponding to a linear Gaussian model.

« Consider an arbitrary acyclic graph over D random variables, in which
each node represent a single continuous Gaussian distribution with its
mean given by the linear function of the parents:

p(z;|lpa;) =N (:U@ Z Wi X +b@-,v@->

JEpa;

where w; and b; are parameters governing the mean, and v; is the variance.

16



Linear Gaussian Models

» The log of the joint distribution takes form:

2
D
In p(x Zlnp (xi|pa;) = — Z ( Z Wi Tj — Z) + const,

=1 JEpa;

where ‘const’ denotes terms independent of x.

 This is a quadratic function of x, and hence the joint distribution p(x) is a
multivariate Gaussian.

» For example, consider a directed graph over three Gaussian variables
with one missing link:

I L9 I3

17



Computing the Mean

» \We can determine the mean and covariance of the joint distribution.

Remember;

p(zi|pa;) =N (% Z Wi T4 + bz‘ﬂh‘)

JEPa;

hence

Ti = Z Wi Tj + bi + i€, €~ N(0,1),
JEpa;
so its expected value:

JEpa;

* Hence we can find components: E[x] = [E[z],...,E[zp]| by doing
ancestral pass: start at the top and proceed in order (see example):

I L9 I3

O—0O—=0

18



Computing the Covariance

 \We can obtain the i,j element of the covariance matrix in the form of a
recursion relation:

cov|z;, x;] = E [(2; — Elz;])(x; — E[z;])]

= |(z; — Elei)) | 3 win(wr — Elei]) + v/ore;

kepa,

— Z w;rCcov|x;, x| + Liv;.
kepa;

« Consider two cases:

- There are no links in the graph (graph is fully factorized), so that wj's are zero.
In this case: E[x] = [by, ...,bD}T, and the covariance is diagonal diag(vy,...,vp).
The joint distribution represents D independent univariate Gaussian
distributions.

- The graph is fully connected. The total number of parameters is D + D(D-1)/2.
The covariance corresponds to a general symmetric covariance matrix. 19



Bilinear Gaussian Model
SNBSS

2 |4

» Consider the following model:

-O-‘-Q]

u V1 V9

QQ Q

O\ /O

ri1 722
uwN(O,l), N M
v~ N(0,1),
r ~ N(uv,1). u; ~N(0,1), i=1,..N
/ \ v, ~N(0,1), j=1,....M
Gaussian terms rij ~ N(u;v;,1).

» The mean is given by the product of two Gaussians. 20



Hierarchical Models

Hyper-
v,,W, hyper Prior Vo s W,
Hyper-prior l l
Hyper
Prior i N 4 i
Prior @) G
AN
Prior LM @ i=1,...N
Data

Data
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Conditional Independence

« We now look at the concept of conditional independence.
* a is independent of b given c:

p(alb, c) = plalc)
« Equivalently:

p(a,ble) = p(alb,c)p(blc)

= plalc)p(blc)
» We will use the notation:
allb]|c

« An important feature of graphical models is that conditional independence
properties of the joint distribution can be read directly from the graph
without performing any analytical manipulations

* The general framework for achieving this is called d-separation, where d
stands for ‘directed’ (Pearl 1988). 29



Example 1: Tail-to-Tail Node

 The joint distribution over three variables can be written:

c p(a,b, c) = p(alc)p(blc)p(c)

* [f none of the variables are observed,
we can examine whether a and b are

5 , independent:
Zp ale)p(ble)p(c)
* In general, this does not factorize into
the product p(a, b) = p(a)p(b).
all b0

 a and b have a common cause.

* The node c is said to be tail-to-tail node with respect to this path (the
node is connected to the tails of the two arrows).



Example 1: Tail-to-Tail Node

« Suppose we condition on the variable c:
p(a,b,c)
p(c)
= plale)p(blc)

p(a, b‘C)

« We obtain conditional independence
property:

allblc

» Once c has been observed, a and b can no longer have any effect on
each other. They become independent.



Example 2. Head-to-Tail Node

 The joint distribution over three variables can be written:

O 'O 'O p(a;b,¢) = p(a)p(cla)p(blc)

* [f none of the variables are observed, we can examine whether a and b
are independent:

a) Y p(cla)p(ble) = p(a)p(bla)
all b|0

* [f c is not observed, a can influence c, and c can influence b.

* The node c is said to be head-to-tail node with respect to the path from
node a to node b.



Example 2. Head-to-Tail Node

« Suppose we condition on the variable c:

7 c b a c _ p(a7 ba C)
_ plap(cla)p(ble)
p(c)

« We obtain conditional independence
property:
a1l b|c

* If c is observed, the value of a can no longer influence b.



Example 3. Head-to-Head Node

 The joint distribution over three variables can be written:

p(a,b,c) = p(a)p(b)p(c|a,b)

* [f none of the variables are observed,
we can examine whether a and b are
independent:

p(a,b) = p(a)p(b)
c a1l b
« Opposite to Example 1.

 An unobserved descendant has no effect.

* The node c is said to be head-to-head node with respect to the path
from a to b (because it connects to the heads of two arrows).



Example 3. Head-to-Head Node

« Suppose we condition on the variable c:

~ pla,b,c)
a b p(CI’?b‘C) T p(C>
L 5  pap®)p(cla,b)
p(c)

* In general, this does not factorize into

. the product.

¢ all b|c

« Opposite to Example 1.

* If the descendant (or any of its descendants) is observed, its value has
implications for both a and b,



Markov Blanket in Directed Models

« The Markov blanket of a node is the minimal set of nodes that must be
observed to make this node independent of all other nodes

* In a directed model, the Markov blanket includes parents, children and
co-parents (i.e. all the parents of the node’s children) due to explaining
away.

(X1, XM
pxilxppy) = —2 )
/p(Xl,...,XM>dX,,;
Hp(xk|Pak>
k

[ Totecon
k

Factors independent of x; cancel
between numerator and denominatan.



Directed Graphs as Distribution Filters

« We can view the graphical model as a filter.

 The joint probability distribution p(x) is allowed through the filter if and
only if it satisfies the factorization property.

* Note: The fully connected graph exhibits no conditional
independence properties at all.

 The fully disconnected graph (no links) corresponds to a joint

distribution that factorizes into the product of marginal distributions. 2



Popular Models

Latent Dirichlet Allocation

@ Pr(topic | doc)

6

o

L©

Pr(word | topic)

* One of the popular models for
modeling word count vectors.

We will see this model later.

!“'0_>
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Bayesian Probabilistic Matrix Factorization

l

gl

o

* One of the popular models for
collaborative filtering applications.
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