# Embodied AI: Language and Perception

Russ Salakhutdinov

Machine Learning Department Carnegie Mellon University





# Learning Behaviors



Learning to map sequences of observations to actions, for a particular goal

# Physical Intelligence



Agent needs to move in the world physically.

Current actions affect future observations.

Require Spatial and Semantic Understanding.

# Navigation





### Goal-conditioned Navigation





#### Language Goal

Blue Chair Largest TV

White Sofa

- Convenient for humans
- Compositionality

### Navigation Tasks





### Real World: Object Goal Navigation

#### Observation



Goal: Potted Plant

Predicted Semantic Map



Third-person view



See video at: https://devendrachaplot.github.io/projects/semantic-exploration

# Exploration



### Exploration

• How to efficiently explore an unseen environment?



- Learning about mapping, pose estimation and path-planning in expensive
- Sample inefficiency
- Poor generalization
- Our solution:
  - Incorporating the strengths of learning
  - Modular and hierarchical system

### Preview: Visual Navigation in the Real World

#### Observation



#### Predicted Map and Pose



### Exploration in Gibson Environment



#### Active Neural SLAM: Overview



#### Neural SLAM Module



### Domain Generalization: Matterport3D



#### **Exploration Results**



# Goal-conditioned Navigation







# Point-Goal Navigation



#### Point-Goal Navigation

Objective: Navigate to goal coordinates

Metric: Success weighted by invers

$$\frac{1}{N} \sum_{i=1}^{N} Success * \frac{ShortestPathLength}{PathLength}$$

Global Policy -> always gives the point goal
 the long-term goal

angle

#### Harder Datasets

#### Hard-GEDR

- Higher Geodesic to Euclidean distance ratio (GEDR)
- Avg GEDR 2.5 vs 1.37, minimum GEDR is 2

#### **Hard-Dist**

- Higher Geodesic distance
- Avg Dist 13.5m vs 7.0m, minimum Dist is 10m



**Euclidean Distance** 

# Point-Goal Navigation

Gibson MP3D









#### Results



\*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17

#### Results



\*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17

# Navigation Tasks

#### **Point Goal**





#### **Object Goal**

Chair TV Sofa

#### Language Goal

Blue Chair Largest TV White Sofa

#### Semantic Priors and Common-Sense



- Humans use semantic priors and common-sense to explore and navigate everyday
- Most navigation algorithms struggle to do so

# Topological Maps



### **Explicit Semantic Mapping**



#### Internet vs Embodied Data











**Active Embodied Data** 









# Using Internet models for Embodied Agents



False positives



False negatives

### **Embodied Perception**

#### Active Embodied data



### **Embodied Perception**

#### Active Embodied data



#### Perception-Action Loop



Pathak et al, Learning instance segmentation by interaction, 2018

Jang et al, Grasp2vec: Learning object representations from self-supervised grasping, 2018

Eitel et al, Self-supervised transfer learning for instance segmentation through physical interaction, 2019

Fang et al., Move to See Better: Self-Improving Embodied Object Detection, 2021

#### SEAL: Self-supervised Embodied Active Learning



#### SEAL: Self-supervised Embodied Active Learning





Both phases do not require any additional labelled data

#### 3D Semantic Mapping



### 3D Semantic Mapping





**3D Semantic Map** 

$$M = K \times L \times W \times H$$





#### 3D Semantic Mapping







#### Gainful Curiosity



#### Policy Learning



- Global Policy: samples a goal every 25 local steps
- Action Space: move forward (25cm), turn left or right (30 degrees)

## SEAL: Self-supervised Embodied Active Learning







Instance label for each pixel



















## SEAL: Self-supervised Embodied Active Learning





|                | Action | Perception             |
|----------------|--------|------------------------|
| Generalization | Train  | Train                  |
| Specialization | Train  | Train + 1 episode test |

#### Dataset

- Gibson dataset: 25 training and 5 test scenes
- 6 object categories: chair, couch, bed, toilet, TV, potted plant.
- Training Set: randomly sample 2500 images (500 per test scene)
- Evaluation Set: randomly sample 12,500 images (500 per training scene)
- Report bounding box and mask AP50 scores for detection and instance segmentation

## Results

|                                                | Gene                | ralization               | Specialization      |                          |  |
|------------------------------------------------|---------------------|--------------------------|---------------------|--------------------------|--|
| Method                                         | Object<br>Detection | Instance<br>Segmentation | Object<br>Detection | Instance<br>Segmentation |  |
| Pretrained Mask-RCNN                           | 34.82               | 32.54                    | 34.82               | 32.54                    |  |
| Random Policy + Self-training [51]             | 33.41               | 31.89                    | 34.11               | 31.23                    |  |
| Random Policy + Optical Flow [22]              | 33.97               | 32.34                    | 34.33               | 32.22                    |  |
| Frontier Exploration [52] + Self-training [51] | 33.78               | 32.45                    | 33.29               | 32.50                    |  |
| Frontier Exploration [52] + Optical Flow [22]  | 35.22               | 31.90                    | 34.19               | 32.12                    |  |
| Active Neural SLAM [10] + Self-training [51]   | 34.35               | 31.20                    | 34.84               | 32.44                    |  |
| Active Neural SLAM [10] + Optical Flow [22]    | 35.85               | 32.22                    | 35.90               | 33.12                    |  |
| Semantic Curiosity [11] + Self-training [51]   | 35.04               | 32.19                    | 35.23               | 32.88                    |  |
| Semantic Curiosity [11] + Optical Flow [22]    | 35.61               | 32.57                    | 35.71               | 33.29                    |  |
| SEAL                                           | 40.02               | 36.23                    | 41.23               | 37.28                    |  |

#### EIF: Embodied Instruction Following: ALFRED

Instruction: place a cold lettuce slice in a waste basket.



Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks

#### FILM: Following Instructions in Language with Modular Methods



#### FII M: Following Instructions in Language with Modular Methods

Instruction: place a cold lettuce slice in a waste basket.

RGB

Semantic Map

Completed Subgoals

X PickUp, Knife

X Slice, Lettuce

X Put, Knife, Sink

X PickUp SlicedLettuce

X Open, Fridge

X Put, SlicedLettuce, Fridge

X Close, Fridge

X Open, Fridge

X PickUp, SlicedLettuce

X Close, Fridge

X Put, SlicedLettuce, GarbageCan

RotateLeft\_90





#### Results

**Table 1:** Test results. Top section uses step-by-step instructions; the bottom section does not.

| Method                                                          |                                  | Tests Seen   |              |       |              | Tests Unseen |              |              |               |  |
|-----------------------------------------------------------------|----------------------------------|--------------|--------------|-------|--------------|--------------|--------------|--------------|---------------|--|
|                                                                 |                                  | PLWGC        | GC           | PLWSR | SR           | PLWGC        | GC           | PLWSR        | SR            |  |
| Low-level Sequential Instructions + High-level Goal Instruction |                                  |              |              |       |              |              |              |              |               |  |
| SEQ2SEQ                                                         | (Shridhar et al., 2020)          | 6.27         | 9.42         | 2.02  | 3.98         | 4.26         | 7.03         | 0.08         | 3.9           |  |
| MOCA                                                            | (Singh et al., 2020)             | 22.05        | 28.29        | 15.10 | 22.05        | 9.99         | 14.28        | 2.72         | 5.30          |  |
| E.T.                                                            | (Pashevich et al., 2021)         | -            | 36.47        | -     | 28.77        | -            | 15.01        | -            | 5.04          |  |
| E.T. + synth. data                                              | (Pashevich et al., 2021)         | 34.93        | 45.44        | 27.78 | 38.42        | 11.46        | 18.56        | 4.10         | 8.57          |  |
| LWIT                                                            | (Nguyen et al., 2021)            | 23.10        | 40.53        | 43.10 | 30.92        | 16.34        | 20.91        | 5.60         | 9.42          |  |
| HITUT                                                           | (Zhang & Chai, 2021)             | 17.41        | 29.97        | 11.10 | 21.27        | 11.51        | 20.31        | 5.86         | 13.87         |  |
| ABP                                                             | (Kim et al., 2021)               | 4.92         | 51.13        | 3.88  | 44.55        | 2.22         | 24.76        | 1.08         | 15.43         |  |
| FILM W.O. SEMANTIC SEARCH                                       |                                  | <u>13.10</u> | <u>35.59</u> | 9.43  | <u>25.90</u> | 13.37        | <u>35.51</u> | <u>10.17</u> | 23.94         |  |
| FILM 🖺                                                          |                                  | <u>15.06</u> | <u>38.51</u> | 11.23 | <u>27.67</u> | <u>14.30</u> | <u>36.37</u> | <u>10.55</u> | <u> 26.49</u> |  |
| High-level Goal In                                              | High-level Goal Instruction Only |              |              |       |              |              |              |              |               |  |
| LAV                                                             | (Nottingham et al., 2021)        | 13.18        | 23.21        | 6.31  | 13.35        | 10.47        | 17.27        | 3.12         | 6.38          |  |
| HITUT G-only                                                    | (Zhang & Chai, 2021)             | -            | 21.11        | -     | 13.63        | -            | 17.89        | -            | 11.12         |  |
| HLSM                                                            | (Blukis et al., 2021)            | 11.53        | 35.79        | 6.69  | 25.11        | 8.45         | 27.24        | 4.34         | 16.29         |  |
| FILM W.O. SEMANTIC SEARCH                                       |                                  | 12.22        | 34.41        | 8.65  | 24.72        | 12.69        | 34.00        | 9.44         | 22.56         |  |
| FILM 🖺                                                          |                                  | 14.17        | <u>36.15</u> | 10.39 | <u>25.77</u> | 13.13        | <u>34.75</u> | 9.67         | 24.46         |  |

FILM: Following Instructions in Language with Modular Methods So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar, Yonatan Bisk, Ruslan Salakhutdinov, ICLR 2022

## Self-supervision with Location Consistency



## Finding Bed



#### Self-Supervision: Semantic Segmentation



### Simulation to Real

#### **Games**

*ViZDoom* 



[CL AAAI-17]



[CMPRS AAAI-18]

#### Photorealistic simulation

Unreal



[CPS ICLR-18]



[PCZS CVPR-18 (w)]

#### Reconstructed simulation

Habitat (Gibson, MP3D)



[CGSGG ICLR-20]



[CSGG CVPR-20]

**Real-world** 



Visual Domain Gap



?

## Simulation to Real







# **Building Intelligent Agents**

Navigate Autonomously
Localize and Plan
Multi-modal Input
Perceptive Human Speech
Reason & Understand Language
Recognize objects

