Embodied AI: Language and Perception

Russ Salakhutdinov

Machine Learning Department Carnegie Mellon University

Learning Behaviors

Learning to map sequences of observations to actions, for a particular goal

Physical Intelligence

Agent needs to move in the world physically. Current actions affect future observations. Require Spatial and Semantic Understanding.

Navigation

Observations **Neural Network** *Actions*

Goal-conditioned Navigation

- Convenient for humans
- Compositionality

Navigation Tasks

Real World: Object Goal Navigation

Observation

Goal: Potted Plant

Predicted Semantic Map

Third-person view

See video at: <https://devendrachaplot.github.io/projects/semantic-exploration>

Exploration

Exploration

- How to efficiently explore an unseen environment?
- Limitations of end-to-end reinforcement learning:
	- Learning about mapping, pose-estimation and path-planning in expensive
	- Sample inefficiency
	- Poor generalization
- Our solution:
	- Incorporating the strengths of learning
	- Modular and hierarchical system

Predicted Map and Pose

Preview: Visual Navigation in the Real World

Observation

Exploration in Gibson Environment

Active Neural SLAM: Overview

Neural SLAM Module

Domain Generalization: Matterport3D

Exploration Results

**Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19*

Goal-conditioned Navigation

Point-Goal Navigation

Point-Goal Navigation

- Objective: Navigate to goal coordinates
- Metric: Success weighted by invers • Global Policy -> always gives the pointgoal as **angle** the long-term goal 1 *N N* ∑ *i*=1 *Success* * *ShortestPathLength PathLength*

Harder Datasets

- **Hard-GEDR**
	- Higher Geodesic to Euclidean distance ratio (GEDR)
	- Avg GEDR 2.5 vs 1.37, minimum GEDR is 2
- **• Hard-Dist**
	- Higher Geodesic distance
	- Avg Dist 13.5m vs 7.0m, minimum Dist is 10m

Point-Goal Navigation

*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17

*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17

Navigation Tasks

Language Goal

Blue Chair Largest TV White Sofa

Semantic Priors and Common-Sense

- Humans use semantic priors and common-sense to explore and navigate everyday
- Most navigation algorithms struggle to do so

Topological Maps

Explicit Semantic Mapping

Internet vs Embodied Data

Static Internet Data

Active Embodied Data

Using Internet models for Embodied Agents

False positives False negatives

Savva et al, Habitat: A platform for embodied AI research, ICCV 2019

Embodied Perception

Active Embodied data

Embodied Perception

Active Embodied data

Perception-Action Loop

Pathak et al, Learning instance segmentation by interaction, 2018 Jang et al, Grasp2vec: Learning object representations from self-supervised grasping, 2018 Eitel et al, Self-supervised transfer learning for instance segmentation through physical interaction, 2019 Fang et al.,Move to See Better: Self-Improving Embodied Object Detection, 2021

SEAL: Self-supervised Embodied Active Learning

Chaplot, Dalal, Gupta, Malik, Salakhutdinov et al, . SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency NeurIPS-21

SEAL: Self-supervised Embodied Active Learning

Both phases do not require any additional labelled data

Chaplot, Dalal, Gupta, Malik, Salakhutdinov et al, . SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency NeurIPS-21

3D Semantic Mapping

3D Semantic Map $M = K \times L \times W \times H$

3D Semantic Mapping

Gainful Curiosity

Policy Learning

- Global Policy: samples a goal every 25 local steps
- Action Space: move forward (25cm), turn left or right (30 degrees)

SEAL: Self-supervised Embodied Active Learning

Instance label for each pixel is obtained using ray tracing based on the agent's pose

Pretrained Mask-RCNN Predictions

Perception Model (Mask RCNN)

SEAL: Self-supervised Embodied Active Learning

Dataset

- Gibson dataset: 25 training and 5 test scenes
- 6 object categories: chair, couch, bed, toilet, TV, potted plant.
- Training Set: randomly sample 2500 images (500 per test scene)
- Evaluation Set: randomly sample 12,500 images (500 per training scene)
- Report bounding box and mask AP50 scores for detection and instance segmentation

Results

EIF: Embodied Instruction Following: ALFRED

Instruction: place a cold lettuce slice in a waste basket.

RotateLeft_90 Predicted Action

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks

FILM: Following Instructions in Language with Modular Methods

FILM: Following Instructions in Language with Modular Methods So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar, Yonatan Bisk, Ruslan Salakhutdinov, ICLR 2022

FILM: Following Instructions in Language with Modular Methods

Instruction: place a cold lettuce slice in a waste basket.

50

Results

Table 1: Test results. Top section uses step-by-step instructions; the bottom section does not.

FILM: Following Instructions in Language with Modular Methods

So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar, Yonatan Bisk, Ruslan Salakhutdinov, ICLR 2022

Self-supervision with Location Consistency

Finding Bed

Object Goal Navigation with End-to-End Self-Supervision, S. Min, H. Tsai, W. Ding, A. Farhadi, R. Salakhutdinov, Y. Bisk, J. Zhang, 2023

Self-Supervision: Semantic Segmentation

Simulation to Real

Games

[CL *AAAI-17*]

[CMPRS *AAAI-18*]

ViZDoom Unreal Habitat (Gibson, MP3D)

[CPS *ICLR-18*]

Predicted

Cleaned Touri

[PCZS *CVPR-18 (w)*]

[CGSGG *ICLR-20*]

Reconstructed simulation

[CSGG *CVPR-20*]

Physical Domain Gap

Visual Domain Gap

?

Simulation to Real

Building Intelligent Agents

Navigate Autonomously Localize and Plan Multi-modal Input Perceptive Human Speech Reason & Understand Language Recognize objects

