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Talk objectives

* Introduce Graph Neural Networks (GNNSs)
 Highlight interesting open research questions



What is a graph?

A graph is composed of
B * Nodes (also called vertices)
« Edges connecting a pair of nodes

presented in an adjacency matrix
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What is a graph?

A graph is composed of
* Nodes (also called vertices)

« Edges connecting a pair of nodes
X, Xc x, Presented in an adjacency matrix
Nodes can have feature vectors
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(slide: P. Velickovic)

Graphs are everywhere
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Graph Neural Networks have a large

Impact on...

Deelend > Blog > Traffic prediction with advanced Graph Neural Networks

03 SEP 2020

Traffic prediction with

advanced Graph Neural
Networks

Food Discovery with Uber Eats:
Using Graph Learning to Power

L]
Recommendations
Ankit Jain, Isaac Liu, Ankur Sarda, and Piero Molino December 4, 2019
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Pinterest Engineering
Aug 15,2018 - 8 minread

®

PinSage: A new graph convolutional neural
network for web-scale recommender systems

Ruining He | Pinterest engineer, Pinterest Labs

Web image search gets better with graph neural
networks

amazon | science

PUBLICATION

P-Companion: A principled
framework for diversitied
complementary product
recommendation

By Junheng Hao, Tong Zhao, Jin Li, Xin Luna Dong, Christos Faloutsos, Yizhou Sun, Wei Wang
2020
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1 to image search uses images returned by traditional search

iles in a graph neural network through which similarity signals are

rieving improved ranking in cross-modal retrieval.
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TEXA

The University of Texas at Austin

Graph Neural Networks have a large

Impact on...

Npj | computational materials

Explore content v  About the journal v  Publish with us v

GCN-RL Circuit Designer: Transferable

nature > npj computational materials > articles > article

Transistor Sizing with Graph Neural
Networks and Reinforcement Learning

Hanrui Wang?, Kuan Wang?, Jiacheng Yang?, Linxiao Shen?, Nan Sun?,

Article | Open Access | Published: 03 June 2021

Benchmarking graph neural networks for materials

Hae-Seung Lee?, Song Han? Chemlstry
IMassachusetts Institute of Technology
2UT Austin Victor Fung &, Jiaxin Zhang, Eric Juarez & Bobby G. Sumpter

IIAN I. Al

Hardware, Al and Neural-nets

npj Computational Materials 7, Article number: 84 (2021) ] Cite this article

The next big thing: the use of graph neural
networks to discover particles

September 24, 2020 | Zack Savitsky @ share| | D Tweet ﬁ Email

Machine learning algorithms can beat the world’s hardest video games in minutes and solve complex equations
faster than the collective efforts of generations of physicists. But the conventional algorithms still struggle to
pick out stop signs on a busy street.

Object identification continues to hamper the field of machine learning — especially when the pictures are
multidimensional and complicated, like the ones particle detectors take of collisions in high-energy physics
experiments. However, a new class of neural networks is helping these models boost their pattern recognition
abilities, and the technology may soon be implemented in particle physics experiments to optimize data
analysis.

7807 Accesses | 7 Citations | 41 Altmetric | Metrics

nature View all journals Search Q Login @

Explore content v  About the journal v  Publish with us v

nature > articles > article

Article | Published: 09 June 2021

A graph placement methodology for fast chip design

Azalia Mirhoseini &, Anna Goldie &, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,

Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William

Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean
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Graph Neural Networks have a large
Impact on...

nature

Explore content v About the journal v Publish with us v Subscribe

|P M istitute for oure & applied mathematics

nature > news > article Deep Learning and
u o | | u | |
Combinatorial Optimizatio
NEWS | 01 December 2021 m In rl Imlz I n

DeepMind’s Al helps untangle the
mathematics of knots

The machine-learning techniques could

sets. Patterns ¢? CellP’ress

OPEN ACCESS

Neural algorithmic reasoning

Petar Velickovi¢'-* and Charles Blundell’
1DeepMind, London, Greater London, UK
*Correspondence: petarv@google.com
https://doi.org/10.1016/j.patter.2021.100273

We present neural algorithmic reasoning—the art of building neural networks that are able to execute algo-

rithmic computation—and provide our opinion on its transformative potential for running classical algorithms
on inputs previously considered inaccessible to them.
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Popular research

. deep learning
reinforcement |learning

graph neural networ
cld cCd U
robustness
neural network
self supervised learning
generalization
unsupervised learning
interpretability
few shot learning
transfer learning
. contrastive learn n%
generative adversarial networ
natural language processing
deep reinforcement learning
federated learning
adversarial robustness
neural architecture search
data augmentation
generative models
continual learning
computer vision
optimization
regularization
machine learning
_ " gan
variational inference
adversarial training
) transformers

semi supervised learnin

deep neural networ
. exploration
disentanglement
adversarial examples
multi task learning
classification
knowledge distillation
] transformer
convolutional neural network
image classification
. attention
uncertainty estimation
variational autoencoders
generative model
. bert

deep learning theo

recurrent neural hetworl
pruning

ICLR 2021 Submission Top 50 Keywords

topic

100 150 200

o
(o))
o
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Popular research topic

ICLR 2021 Submission Top 50 Keywords

. deep learning
reinforcement |learning

graph neural networ
cld cCd U
robustness

neural network

self supervised learning
generalization
unsupervised learning
interpretability

50 MOST APPEARED KEYWORDS (2022) noreamenteamine L MOST APPEARED KEYWORDS (2023)

deep learning
representation learnin
| raph neural networ

reinforcement learning

federate learning
self-supervised learning

self-supervised learning

federate learnin contrastive learning
generative mode robustness
robustness generative model

contrastive learning continual learnin
generalization neural networ

neural network — se——— transfer learnin
Computer V|s!0n I diffusion mode
continual learning  e————— generalization

I

language model

transfer learning
computer vision — e————

interpretability
s nSeTiamy STTTETTT —
adversarial examples
multi task learning
classification

knowledge distillation

. transformer
convolutional neural network
image classification

. attention

uncertainty estimation
variational autoencoders
generative model
. bert

deep learning theo

recurrent neural hetworl
pruning

50 100 150 200 250
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Popular research topic

. deep learning
reinforcement |learning

graph neural networ
cld cCd U
robustness
neural network

self supervised learning
generalization
unsupervised learning
interpretability

50 MOST APPEARED KEYWORDS (2022)

ICLR 2021 Submission Top 50 Keywords

reinforcement learning
geecp |edlrning
cCPICSC dliU cd U
_transformer
self-supervised learning

federate learnin

generative mode
robustness
contrastive learning
generalization
neural network
computer vision
continual learning
transfer learning
interpretability

mmobies WserianyiermernT =

adversarial examples
multi task learning
classification
knowledge distillation
] transformer
convolutional neural network
image classification
. attention
uncertainty estimation
variational autoencoders
generative model
. bert
deep learning theo
recurrent neural hetworl
pruning

o

50 MOST APPEARED KEYWORDS (2023)

reinforcement learning

deep learning

representation learnina

Top 50 Keywords after Lemmatization (2024)

large language model
reinforcement learning -

diffusion model 1

graph neural networ .

deep learning
representation learning A
transformer -

federate learning -
generative model -
language model
self-supervised learning A
interpretability -
contrastive learning -
continual learning
neural network

lIm A
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What is Graph Neural Network?



Problem definition

* Given
Xp * Agraph
* Node attributes
\ X; Xr * (part of nodes are labeled)

* Find
* Node embeddings

* Predict
 Labels for the remaining nodes



Graph Neural Networks

Target Node Xp

l C X Xn
X, ¢

Xg

Xp

“Homophily: connected nodes are
related/informative/similar”



Graph Neural Networks

“Homophily: connected nodes are
related/informative/similar”



Graph Neural Networks

“Homophily: connected nodes are
related/informative/similar”
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Graph Neural Networks
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Graph Neural Networks
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Friend
recommendation

Product
recommendation

Fraud detection

Churn prediction
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Graph Neural Networks

Target Node Xs
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Graph Neural Networks

Target Node Xs

9»
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Graph Neural Networks

X; X
A X

Target Node Xs

oth layer

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 21



Graph Neural Networks

Target Node Xs

1st layer

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning

oth layer
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Graph Neural Networks

Target Node Xs

2nd layer 1st layer

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning



Graph Neural Networks

1. Aggregate messages from neighbors

hl(,l): node embedding of v at [-th layer
N (v) : neighboring nodes of v

f(l): aggregation function at [-th layer
ml(,l) : message vector of v at [-th layer

m{ = fO (hP,{hP:u € w@)})
= fO (h[gl), hg)hg>hg>) Neighbors of node A
N(A) ={B,C,D}

24
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Graph Neural Networks

1. Aggregate messages from neighbors Q h(l)
mfll) = f (h(l) {h(l) ueEwN (A)}) (l+1)
10 (2 H0n) o Ed----0
2. Transform messages h(l)
g(l) transformation function at [-th layer
hlng-l) g(l) (m(l))

Neighbors of node A
N(A) =1{B,C,D}

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 25



Graph Neural Networks

In each layer [, D
for each target node v : 13 Gt
h®

1. Aggregate messages Ae <"
ml()l) =f(l) (hg),{hg)u € N(U)}) -« <

2. Transform messages
[+1 l
hy ™ = gOm)

2nd Jayer 1st layer
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Graph Neural Networks T,

In each layer [, D
for each target node v : 13 Gt
h®

1. Aggregate messages A g h(Cl)
my = fO (hP, {hP:u € ¥ @)} Qﬂ: - -«

~
~

2. Transform messages (1)
h1(71+1) _ g(l) (ml(,l)) hD
2nd Jayer 1st layer
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Graph Neural Networks

In each layer [,
for each target node v :

1. Agg regate messages

llllll

------

h(z+1)

'
llllll

Minji Yoon

(CMU)

2nd Jayer

t 10707: Introduction to Deep Learn
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Graph Neural Networks

Graph Convolutional Networks!"]

1. Aggregate messages

1
@ _ @
m,’ = E h
’ |N(v) + 1 u €N )u{v} ’

2. Transform messages

[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph 2nd Iayer 1 st Iayer Oth Iayer

convolutional networks." o
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Graph Neural Networks

Graph Isomorphism Networksl(?! e
B Gx
1. Aggregate messages /’(’1)
Vg
l h
m® = z h® 7 -
u € Nw)u{v} w
2. Transform messages S
D) _ @ o (D \Q‘
h, 7~ =ocW¥ om;”) h(l)
D

[2] Xu, Keyulu, et al. "How powerful are graph neural networks?." 2nd Iayer 1 st Iayer Oth Iayer
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Graph Neural Networks

Simplified GCN3!

1. Aggregate messages

1
@ _ @
m,’ = E h
’ |N(v) + 1 u €N )u{v} ’

2. Transform messages
h1(71+1) —w® o, mw(yl)

[3] Wu, Felix, et al. "Simplifying graph convolutional networks." 2nd Iayer 1 st Iayer Oth Iayer
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Computation graphs
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Computation graphs

Shared -

parameters SLLLLLLY

eNEEEE W
Qummmnmsn

Shared
parameters
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Batch execution AD = W0 (L 0Dy

u

|V ()+1]




= (I=1)y)

h
U(W(l) ° (U\f(v)+1| Zu EN(w)u{v}tu




[—
Zu € NV (v)u{v} hl(t 1)))

llllll

llllll




Downstream tasks

* Node-level prediction

3

[
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Downstream tasks

* Node-level prediction
» Edge-level prediction

D ----......

D and E are related enough
to be connected?

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Downstream tasks

* Node-level prediction
» Edge-level prediction
« Attribute-level prediction

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Downstream tasks

* Node-level prediction

» Edge-level prediction

« Attribute-level prediction
» Graph-level prediction

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Downstream tasks r——————

* Node-level prediction
* Edge-level prediction :
* Attribute-level prediction Q—

. .
----------------------------------------

o Graph-|eve| predictiop‘ ............................................ .

....
lllllllllllllllllllllllllllllllllllllllll
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Downstream tasks

* Node-level prediction
» Edge-level prediction

« Attribute-level prediction
« Graph-level prediction




Node-level prediction tasks

Node
classification

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learn

ing
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Node-level prediction tasks

/

Node
classification

« Classify papers into topics on citation networks

 Cluster posts into subgroups on Reddit networks

« Classify products into categories on Amazon co-
purchase graphs

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 44



Graph-level prediction tasks

Graph classification

(ex) sum, average, min/max pooling
of node embeddings

hg = READOUT(R, A, -, h$P)

Minji Yoon (CMU) - Guest lectue at 07: Introduction to Deep Learning
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Graph-level prediction tasks

Graph classification

hg = READOUT(R?, b, -, (V)

¢

* Predict properties of a
molecule (graph)
where nodes are atoms
and edges are chemical
bonds
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So far, we have talked about..

1. Graph Neural Network
* Problem definition
« Skeleton
« Aggregation operation
» Transformation operation
2. Implementation
« Computation graph
« Batch execution
3. Downstream tasks
* Node-level prediction
« Graph-level prediction



So far, we have talked about..

1. Graph Neural Network
* Problem definition

lllllllllllllllllllllllllllllllllllllllllllllll

i« Skeleton
: - Aggregation operation

*
L

.
-----------------------------------------------

2. Implementation
« Computation graph
« Batch execution

3. Downstream tasks
* Node-level prediction
« Graph-level prediction



Graph Neural Networks

Q

«_-_ ,k
s
" NG

Target Node

I\\

/

N\
0@
\Q
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Graph Neural Networks - Width

Target Node

Should we aggregate

Q all neighbors?
‘ Vlinji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Graph Neural Networks - Depth

Target Node

l B

A

(F
How many hops Il
A

~
~
Q should we explore?
v Mir ji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 51
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Graph Neural Networks - Aggregation

Target Node

h

-

How should we
aggregate
neighbors?

Vinji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Graph Neural Network Architectures

* Width

* Which neighbors should we aggregate messages from?
* Depth

« How many hops should we check?
» Aggregation

« How should we aggregate messages from neighbors?

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning



Graph Neural Network Architectures

* Width

« Which neighbors should we aggregate messages from?
* Depth

« How many hops should we check?
» Aggregation

« How should we aggregate messages from neighbors?
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Aggregation Width in GNNs

* If we aggregate all neighbors, GNNs have scalability issues

» Neighbor explosion >
- In L -layer GNNs, one node aggregates information from 0 (K1)
nodes where K is the average number of neighbors per node
o9
dh &b g
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Aggregation Width in GNNs

* If we aggregate all neighbors, GNNs have scalability issues

* Neighbor explosion
« Hub nodes who are connected to a huge number of nodes
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Aggregation Width in GNNs

* Limit the neighborhood expansion by sampling
a fixed number of neighbors

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 57



Aggregation Width in GNNs

« Random sampling
« Assign same sampling probabilities to all neighbors
« GraphSagel4!

* Importance sampling

 Assign different sampling probabilities to all neighbors
« FastGCNPO) LADIES®], AS-GCN7l, GCN-BS8l, PASSH!

[4] Will Hamilton, et al. “Inductive representation learning on large graphs”

[5] Jie Chen, et al. “Fastgcn: fast learning with graph convolutional networks via importance sampling”

[6] Difan Zou, et al. “Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks”
[7] Wenbing Huang, et al. “Adaptive sampling towards fast graph representation learning”

[8] Ziqi Liu, et al. “Bandit Samplers for Training Graph Neural Networks”

[9] Minji Yoon, et al. “Performance-Adaptive Sampling Strategy Towards Fast and Accurate Graph Neural Networks”



Aggregation Width in GNNs

Importance sampling

. assign higher sampling probabilities to neighbors who
* Minimize variance in sampling
« FastGCN®!, LADIES®!, AS-GCN], GCN-BS®!
« Maximize GNN performance
« PASSE

[4] Will Hamilton, et al. “Inductive representation learning on large graphs”

[5] Jie Chen, et al. “Fastgcn: fast learning with graph convolutional networks via importance sampling”

[6] Difan Zou, et al. “Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks”
[7] Wenbing Huang, et al. “Adaptive sampling towards fast graph representation learning”

[8] Ziqi Liu, et al. “Bandit Samplers for Training Graph Neural Networks”

[9] Minji Yoon, et al. “Performance-Adaptive Sampling Strategy Towards Fast and Accurate Graph Neural Networks”



Aggregation Width in GNNs

Method Cora Citeseer Pubmed AmazonC AmazonP MsCS MsPhysics
FastGCN 0.582 0.496 0.569 0.480 0.542 0.520 0.638
AS-GCN 0.462 0.387 0.502 0.419 0.480 0.403 0.516
GraphSage | 0.788 0.698 0.792 0.707 0.787 0.766 0.875
GCN-BS 0.788 0.693 0.809 0.736 0.300 0.780 0.887

; PASS 0.821 0.715 0.858 0.757 0.855 0.884 0.934 -

Node classification task on 7 different real-world graphs
PASS outperforms all variance-minimizing methods by up to 10.4%

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Aggregation Width in GNNs

Method Cora Citeseer Pubmed AmazonC AmazonP MsCS MsPhysics
FastGCN 0.582 0.496 0.569 0.480 0.542 0.520 0.638
AS-GCN 0.462 0.387 0.502 0.419 0.480 0.403 0.516
GraphSage | 0.788 0.698 0.792 0.707 0.787 0.766 0.875
GCN-BS 0.788 0.693 0.809 0.736 0.300 0.780 0.887

; PASS 0.821 0.715 0.858 0.757 0.855 0.884 0.934 -

Real-world graphs are noisy!!

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Graph Neural Network Architectures

« Width

* Which neighbors should we aggregate messages
from?

* Depth
 How many hops should we check?
» Aggregation

* How should we aggregate messages from
neighbors?

~
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Aggregation Depth in GNNs

* Informative neighbors could be indirectly connected with a
target node

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Aggregation Depth in GNNs

* Informative neighbors could be indirectly connected with a
target node

« Can’t we just look multiple hops away from the target node?

8l N

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Aggregation Depth in GNNs

 2-layer or 3-layer GNNs are commonly used in real worlds

Wasn’t it Deeeep Learning?




Aggregation Depth in GNNs

 When we increase the depth L more than this, GNNs face

neighbor explosion 0(K") @
« Over-smoothing
« Over-squashing
o9
dh &b g
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Aggregation Depth in GNNs

Over-smoothingl19
 When GNNs become deep, P
nodes share many neighbors 5

* Node embeddings become indistinguishable

[10] Qimai Li, et al. “Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning”
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Aggregation Depth in GNNs

Over-smoothingl19
* Node embeddings of Zachary’s karate club network with GNNs

(a) 1-layer

[10] Qimai Li, et al. “Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning”

[ ]
0.35 A
0.30 1
° °
° ° 0.25 [ ]
" 4 ° [ ] oo
e 0° o 0.20 A ° °
o °
0.15 A
° 0.10 A °
0.05 A o
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- . . r . . - 0.00 -— . ; : . . . .
-0.4 -03 -0.2 -0.1 0.0 0.1 0.2 -020 -0.15 -0.10 -0.05 0.00 005 010 0.15

(b) 2-layer
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(c) 3-layer

(d) 4-layer
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Aggregation Depth in GNNs

Over-squashingl'2l

* A node’s exponentially-growing neighborhood is compressed
Into a fixed-size vector

[12] Uri Alon, et al. “ON THE BOTTLENECK OF GRAPH NEURAL NETWORKS AND ITS PRACTICAL IMPLICATIONS”



Aggregation Depth in GNNs

Over-squashingl'2l

O—=0

Acc —m— GGNN (train) |

—@— GAT (train)
—— GIN (train) :
—A— GCN (train) | : :

2 3 4 5 § 7 8

r (the problem radius)

OO0
ORI T 00O

[12] Uri Alon, et al. “ON THE BOTTLENECK OF GRAPH NEURAL NETWORKS AND ITS PRACTICAL IMPLICATIONS”
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Aggregation Depth in GNNs

Decoupling the two concepts of depths in GNNs!13!
* Depth-1: neighborhood that each node aggregates information from
* Depth-2: number of layers in GNNs

[13] Hanqing Zeng, et al. “Decoupling the Depth and Scope of Graph Neural Networks”



Aggregation Depth in GNNs

Decoupling the two concepts of depths in GNNs!13!
* Depth-1: neighborhood that each node aggregates information from
* Depth-2: number of layers in GNNs

Depth of neighborhood
(Depth-1)

Gs = SAMPLE(G)

[13] Hanqing Zeng, et al. “Decoupling the Depth and Scope of Graph Neural Networks”



Aggregation Depth in GNNs

Decoupling the two concepts of depths in GNNs!13!

* Depth-1: neighborhood that each node aggregates information from

* Depth-2: number of layers in GNNs

Depth of neighborhood
(Depth-1)

Gs = SAMPLE(G)

[13] Hanging Zeng, et al. “Decoupling the Depth and Scope of Graph Neural Networks”
Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning

Depth of GNN
(Depth-2)
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Graph Neural Network Architectures

« Width
« Which neighbors should we aggregate messages from?
* Depth
« How many hops should we check?
» Aggregation
 How should we aggregate messages from neighbors?




Aggregation strategy in GNNs

In each layer [ :

Aggregate over neighbors

-----

lllll

Transform messages
l -
hy = g (my ™)




Aggregation strategy in GNNs

« GCNDI

» Average embeddings of neighboring nodes

[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph convolutional networks."



Aggregation strategy in GNNs

« GAT4]
« Different weights to different nodes in a neighborhood
« Multi-nead attention

exp (LeakyReLU (5T (Wh, ||Wﬁj]))
Oéij =

< 0
e €Xp (LeakyReLU (5T[wiii||wﬁk])) v S
o8

[14] Petar Velickovic., et al. "GRAPH ATTENTION NETWORKS."

concat/avg
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Aggregation strategy in GNNs

In each layer [ :

Aggregate over neighbors

mg_l) =§f(1)§(h§l_1),{hg_1):u € N(v)})
.C.c;r.e part of GNNs

Transforrp messages

h$ =ig®im{ ™)

Any neural network module can fit in.
1-layer MLP is commonly used.
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Aggregation strategy in GNNs

Power of GNNs

Power of aggregation strategies



Aggregation strategy in GNNs

* By measuring the power of GNNs, we can find the best
aggregation strategy!!

\»
\@@

>/\,«

!
|
\ ~
'.' \



Aggregation strategy in GNNs

* By measuring the expressive power of GNNs, we can find the
best aggregation strategy!!

* But.. what is the power of GNNs and how can we measure it?

® 9
-



Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!

* Metric
« Graph-level prediction task
« Can a GNN model distinguish two non-isomorphic graphs?

[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”



Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!

* Metric
« Graph-level prediction task
« Can a GNN model distinguish two non-isomorphic graphs?

SR

[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”
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Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!

* Metric
« Graph-level prediction task
« Can a GNN model distinguish two non-isomorphic graphs?

-t R

[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”
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Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!
« Any aggregation-based GNN is at most as powerful as the WL test!®]
« Maximum power = aggregation strategy is injective

f(x1) = f(x2) = x1 = X2

[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”
[15] Boris Weisfeiler and AA Leman. “A reduction of a graph to a canonical form and an algebra arising during this reduction”



Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!
« Any aggregation-based GNN is at most as powerful as the WL test!®]
« Maximum power = aggregation strategy is injective
* (ex) summation

T ¢ T T
T A 7.9¢79

Mean and Max both fail, while Sum can distinguish them!!

[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”
[15] Boris Weisfeiler and AA Leman. “A reduction of a graph to a canonical form and an algebra arising during this reduction”
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Aggregation strategy in GNNs

« Can we make more powerful GNNs?
* Very active area, with many open problems



Aggregation strategy in GNNs

* Homophily assumption
 Connected nodes are similar/related/informative



Aggregation strategy in GNNs

* Homophily assumption
 Connected nodes are similar/related/informative

- How can we deal with heterophilous networks ?!212]
 Connected nodes have different class labels and dissimilar features

[21] Jiong Zhu., et al. "Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs”
[22] Yao Ma, et al. “IS HOMOPHILY A NECESSITY FOR GRAPH NEURAL NETWORKS?”



Improved accuracy
after filtering datasets

Aggregation strategy in GNNs

] squirrel
° accuracy on accuracy on
Heterophllous graph datasets original dataset  filtered dataset rs
have serious drawbacks!23l ResNet 33.88 +£1.79  36.55+ 1.82
ResNet+SGC | 34.36 +1.21 38.36 + 1.97
ResNet+adj 65.46 + 1.58 38.37 = 1.99
GCN 39.06 + 1.52 39.47 + 1.47
Datasets have SAGE 35.83 &% 1.32 36.09 + 1.99
bl I GAT 32.21 4+ 1.63 35.62 + 2.06
2OINE ProbiCTNSE GAT-sep 35.72+1.98  35.46 &+ 3.10
GT 31.61 +£1.10 36.30 + 1.98
B GT-sep 36.08 £+ 1.58 36.66 + 1.63
NS I H2GCN 29.45 +1.65 35.10+1.15 17/15
WJ \') { - CPGNN 30.91 +£1.98 30.04 £2.03 16/16
: GPR-GNN 33.39 £+ 2.05 38.95 + 1.99 13/3
Z \ FSGNN 68.93 + 1.69 35.92 +1.32 1/10
e GloGNN 61.21 +1.96 35.11 +1.24 3/14
FAGCN 47.63 +1.85 41.08 + 2.27 4/1
GBK-GNN 37.06 +1.24 35.51 4 1.65 1112
JacobiConv 46.17 £4.34 29.71 + 1.66 5/17

[23] Oleg Platonov., et al. "A critical look at the evaluation of GNNs under heterophily: are we really making progress?”
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So far, we have talked about..

1. Graph Neural Network

* Problem definition
« Skeleton: aggregation, transformation operations

2. Research questions in GNN architectures
» Width
* Depth
« Aggregation

3. GNN training strategy



How to train GNNs

« Semi-supervised learning
* Input node features are given for all nodes in a graph
* Only a subset of nodes have labels



How to train GNNs

» Unsupervised learning!2°]
 Contrastive learning

Original graph (X,A) (H,A)

FY R EEBRBEEDRE

Corrupted graph (X,A) (H,A)

[26] Petar Velickovi¢., et al. "DEEP GRAPH INFOMAX"
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How to train GNNs

* Transfer learning
» Transfer a pre-trained GNN model between graphs!?]

Pre-trained GNN f

K <

Facebook network

[27] Jiezhong Qiu, et al. "GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training"
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How to train GNNs

* Transfer learning
» Transfer between different node types across a heterogeneous graph!2e]

[28] Minji Yoon, et al. "Zero-shot Domain Adaptation of Heterogeneous Graphs via Knowledge Transfer Networks "



(slide: P. Velickovic)
Impactful applications in science

* GNNs for molecule classification

* Molecule
* Node: atoms
* Edge: bonds
* Input features: atom type, charge, bond type

e

O

HO
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(slide: P. Velickovic)
Impactful applications in science

» Graph-level prediction: whether the molecule is a potent drug!?°]
 Binary classification on whether the drug will inhibit certain bacteria

H
N [
/O/ \’(_) GNN —
O
HO
Molecule Inhibits E.coli?

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”



(slide: P. Velickovic)
Impactful applications in science

« Graph-level prediction: whether the molecule is a potent drugl°]
« Execute on a large dataset of known candidate molecules
« Select the ~ top-100 candidates from the GNN model
* Have chemists thoroughly investigate those

H

i QNT—’ _>

Molecule Inhibits E.coli?

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”



(slide: P. Velickovic)
Impactful applications in science

* Discover a previously overlooked compound that is a highly
potent antibioticl?°]

H,N N
W

Halicin

S

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”



(slide: P. Velickovic)

Impactful applications in science

- nature

A Deep Learning Approach to Antibiotic Discovery

Graphical Abstract Authors NEWS - 20 FEBRUARY 2020
Jonathan M. Stokes, Kevin Yang, o o ° o °
A — e swansan,... onmis. sz, POWEFfUl antibiotics discovered using Al

peg et hevéak Lot "T“‘ L Regina Barzilay, James J. Collins
s 2, g . . . ‘ ’ :
Nt Machine learning spots molecules that work even against ‘untreatable’ strains of

X G g Correspondence )

s 8 LS regina@csail.mit.edu (R.B.), bacteria.
R lning st jimjc@mit.edu (J.J.C.)
o v

f Deep learnin, g

o FINANCIAL TIMES
‘ﬁ t 2 i E E Q Sign in News Sport Reel Worklife Travel Future

i COMPANIES TECH MARKETS GRAPHICS OPINION WORK & CAREERS LIFE & ARTS HOW TO SPEND IT

CORONAVIRUS BUSINESS UPDATE

. - Home @ Video World UK & Business Tech Science = Stories = Entertainment & Arts Get 30 days’ complimentary access to our Coronavirus Business
\
o-\NIS* S>§N =5 Update newsletter
}\) SY\N o‘g,xsh
HN » . . .
Bacterial cell death “"‘;,s\@ Our new gulde intelligence
/l Acinetobacter baumannii BEEE WORKLIFE
Clostridioides difficile

Anti-social robots hari

for gettin g ahe ad obotics ﬁ ‘Death of the office’ homeworking

claims exaggerated & increase social distanc

Scientists discover powerful antibiotic =~ At imeigence

using Al Al discovers antibiotics to treat drug-resistant

® 21 February 2020 <: Share diSCaSCS

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery Machine learning uncovers potent new drug able to kill 35 powerful bacteria
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So far, we have talked about..

Graph Neural Network

Research questions in GNN architectures
GNN training strategy

Applications in science

W=



So far, we have talked about..

Graph Neural Network

Research questions in GNN architectures

GNN training strategy

Applications in science Ad"on%

Recent Directions inspired by other disciplines
 How to apply Transformers to graphs
 How to utilize Large Language Models (LLMs) for graph tasks

o »~ Wb~



Graph Transformer

e Limitations of GNN

« Hard-coded structural inductive bias
 Limited expressiveness (WL-test)

« Oversmoothing \
« Oversquashing



Graph Transformer

» Aggregate from all nodes in a graph regardless of their
connectivity

... Are we going to \
throw away the graph
information?

)e



Graph Transformer

V1 Uy V3 Uy Vs

« Graphormer!27] S
MatMul Vg
Sof:Max f_v3
t Uy \
% Us v
D N f t. Scale Spatial Encoding ‘ vs
egree intormation v Uy U3 Uy Vs
h(o) — xi H _I_ " ‘ [ l Vs -
¢ deg (’Uz) deg (’Uz) [Liuean] [Lineaﬂ [Lineaﬂ ~— U3 Uy
LQ K v J Uy U3
U5
hW h W T ]_ Edge Encoding
g = CEQPEE by toswbeeey = 5 Dol | g o prprm -
. . . . Node Feature Centrality Encoding
Spatial distance information
Edge attribute information
[27] Chengxuan Ying, et al. "Do Transformers Really Perform Bad for Graph Representation?"
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Graph Transformer

« GraphTrans!28]

Transformed <CLS>

with Global Info [ ] [ [

——————

-~ -
-~ -
- -

-~ e
T e -

Concat

L

-]
]
]

Output
Embeddings

Embeddings of
Nodes

[.inear

Local information

Global information

[28] Zhanghao Wau, et al. "Representing Long-Range Context for Graph Neural Networks with Global Attention"
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Graph Transformer

[ Prediction }

* TokenGT!29 \

Transformer Encoder

A

Type B - -
Identifiers  [node] [edge]

V2 v Node .2..—’[=

. Identifiers

FEEY
GERREE
13 ) 6.

Input Graph with Token-wise Embedding

[29] Jinwoo Kim, et al. "Pure Transformers are Powerful Graph Learners"
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LLM + GNN

 Large Language Model (LLM)

* ”Inflection point in Al”, “Dawn of Artificial General Intelligence”
HiI’'m Pi, GitHub Copilot
your personal Al. -\ O ceon, X
" & N | just watched GPT-4 turn a hand-drawn sketch into a

I'myour personal Al, designed to be
supportive, smart, and there for you anytime. . .
functional website.
Khanmigo - e e . i
@ammaar - Follow

Can GPT-4 code an entire game for you? Yes, yes it can.
Pietro Schirano &
W @skirano - Follow
Dan Shipper =< & X

| don't care that it's not AGI, GPT-4 is an incredible and @ @danshipper - Follow
transformative technology.

It's important that you learn how to do this
yourself! What do you think you need to do
to multiply 2 by 5/12?

They need the same denominator.

That's a good thought, but in this case, you

GPT-4 does drug discovery.

| recreated the game of Pong in under 60 seconds.
don't need to find a common denominator It was my firSt try

because you're multiplying, not adding or
subtracting. What else could you try?

Give it a currently available drug and it can:
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LLM + GNN

 Large Language Model (LLM)
* ”Inflection point in Al”, “Dawn of Artificial General Intelligence”

Can we improve GNN
using LLMs?



LLM + GNN

o GIANTIS0]
Neighborhood prediction as XMC problem:

Standard GNN - A Y
pipeline: No fine-tuning Optional | » 2trn
. GNNs
Node i: BoW,
R i or other ML Output
Title + Abstract BERT xplaln XsLLGNN] methods) utpu

Graph Information Graph information included Multi-label
not included [ n
GIANT: A A Yirn ey

e a2 1= =]
-0 = 00 C

SO O =IO
SO OOl
OO O e

GNNs

Node i: SSL fine-tuned X
i S TV e g (OF Other ML .
Title + Abstract language model CRE J: -|' f(D(T))

— ®:Text encoder —y.=A;
Graph information included Ti f: Predictor

[30] Eli Chien, et al. "Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction"
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LLM + GNN

« GLEM31]

output

ingutE
target :

\
Graph (

Structure M- Step
GNN training

Iext Embedding

Pseudo-label by LM

\A

Pseudo-label by GNN

LM training |e——

\ Text Attribute

[31] Jianan Zhao, et al. "Learning on Large-scale Text-attributed Graphs via Variational Inference"
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LLM + GNN

Step 1: Node Feature Extraction Step 2: Downstream Tasks
Prediction: cs.CV, cs.IR, ¢s.CL, ¢s.LG, cs.Al on TAGs

+ TAPER2] : >
\ /Explanation: The paper is about a new dataset for scene text

1
1
/ 1
[ . . . . . 1
| Abstract: Text in curve orientation, despite being one of 3 5 L 5 s '
: S : detection and recognition, which is a topic related to computer vision

the common text orientations in real world environment... . : ] '
(cs.CV). The paper also mentions the use of deep learning techniques .

such as DeconvNet, which falls under the sub-category of artificial |
intelligence (cs.Al). The dataset is annotated and involves text !
recognition, which could also fall under the sub-categories of 1
1

1

1

1

1

1

1

1

1

1

Ll

1

1

Title: Total Text A Comprehensive Dataset For Scene Text
Detection And Recognition.
Question: Which arXiv CS sub-category does this paper
belong to? Give 5 likely arXiv CS sub-categories as a
comma-separated list ordered from most to least likely, in
the form "cs.XX", and provide your reasoning.

| Answer:

information retrieval (cs.IR) and natural language processing (cs.CL).
Finally, the paper discusses the effectiveness of different solutions,
which could be evaluated using machine learning techniques, falling
under the sub-category of machine learning (cs.LG).

4
bl

......................... e mm s m s R s E— ., ——--——---

Title: Respiinse foeididon Fingttune \
itle: LM Ly
et GPT3.5 (175B) Explanation: T
Frozen : (el
g tune
\ > _%ble
without fine-tuning ( Shallow Embedding Techniques
L e.g., skip-gram / bags of words J
Shallow Embedding Pipeline (e.g., OGB) LM-Based Pipeline (e.g., GIANT) : : LLM-Based Pipeline (Ours)

[32] Xiaoxin He, et al. "Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning"
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Still many open problems..

* And many more chances to do groundbreaking research

* Diverse types of graphs
« 3-dimensional graphs
« Temporal graphs
* Multimodal graphs

* Diverse types of architecture
« Graph Convolution Networks

« Graph Transformers
« LLMs



Thank youl!

Questions?®

minjiy@cs.cmu.edu | https://www.minjiyoon.xyz



