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Talk objectives

• Introduce Graph Neural Networks (GNNs) 
• Highlight interesting open research questions
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A graph is composed of 
• Nodes (also called vertices)
• Edges connecting a pair of nodes
presented in an adjacency matrix
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A graph is composed of 
• Nodes (also called vertices)
• Edges connecting a pair of nodes
presented in an adjacency matrix

Nodes can have feature vectors
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Graphs are everywhere
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(slide: P. Veličković)



Graph Neural Networks have a large 
impact on…
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Graph Neural Networks have a large 
impact on...



Popular research topic
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Popular research topic
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Popular research topic
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(2024)



What is Graph Neural Network?



Problem definition
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• Given
• A graph
• Node attributes
• (part of nodes are labeled)

• Find
• Node embeddings

• Predict
• Labels for the remaining nodes
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Graph Neural Networks
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“Homophily: connected nodes are 
related/informative/similar”
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Graph Neural Networks
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Graph Neural Networks
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Graph Neural Networks
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Graph Neural Networks

B

A

D

C F

E

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 18

𝑋!

𝑋" 𝑋#

𝑋$𝑋%

𝑋&

ℎ!

Friend 
recommendation

Product 
recommendation

Fraud detection

Churn prediction



Graph Neural Networks
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Graph Neural Networks
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Graph Neural Networks
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Graph Neural Networks
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Graph Neural Networks
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Graph Neural Networks
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Neighbors of node A 
𝒩 𝐴 = 𝐵, 𝐶, 𝐷

1. Aggregate messages from neighbors
ℎ!
" : node embedding of 𝑣 at 𝑙-th layer

𝒩 𝑣 	: neighboring nodes of 𝑣
𝒇 " : aggregation function at 𝑙-th layer
𝑚!
(")	: message vector of 𝑣 at 𝑙-th layer
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Graph Neural Networks
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2. Transform messages
𝒈 " : transformation function at 𝑙-th layer
ℎ%
("*+) = 𝒈 " (𝑚%
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Graph Neural Networks
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Graph Neural Networks
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Graph Neural Networks
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Graph Neural Networks
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Graph Convolutional Networks[1]
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[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph 
convolutional networks."



Graph Neural Networks
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[2] Xu, Keyulu, et al. "How powerful are graph neural networks?."



Graph Neural Networks
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[3] Wu, Felix, et al. "Simplifying graph convolutional networks."



Computation graphs
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Computation graphs

Shared 
parameters

Shared 
parameters
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Batch execution

Batch size = 3

ℎ!
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Batch execution

Batch size = 3

ℎ!
(") = 𝜎(𝑾 " ∘ ( +

|𝒩 ! *+|
∑&	∈	𝒩 ! ∪{!}ℎ&

"3+ ))

𝑯(") = 𝜎( :(𝑨 + 𝑰)𝑯("3+)𝑾 " )
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Node embedding matrix 

(row-normalized) Adjacency matrix 



Batch execution

Batch size = 3
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Fixed Trainable



Downstream tasks

• Node-level prediction
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Downstream tasks

• Node-level prediction
• Edge-level prediction
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Downstream tasks

• Node-level prediction
• Edge-level prediction
• Attribute-level prediction
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Downstream tasks

• Node-level prediction
• Edge-level prediction
• Attribute-level prediction
• Graph-level prediction
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Downstream tasks

• Node-level prediction
• Edge-level prediction
• Attribute-level prediction
• Graph-level prediction
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Downstream tasks

• Node-level prediction
• Edge-level prediction
• Attribute-level prediction
• Graph-level prediction
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Node-level prediction tasks

𝒉𝑨
(𝟐)

Node 
classification
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Node-level prediction tasks

𝒉𝑨
(𝟐)

Node 
classification

• Classify papers into topics on citation networks
• Cluster posts into subgroups on Reddit networks
• Classify products into categories on Amazon co-

purchase graphs
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Graph-level prediction tasks

𝒉𝑨
(𝟐) 𝒉𝑩

(𝟐) 𝒉𝑪
(𝟐)

!!!!

𝒉𝑮 =	READOUT(𝒉𝑨
(𝟐), 𝒉𝑪

(𝟐), ---, 𝒉𝑭
(𝟐))

Graph classification
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(ex) sum, average, min/max pooling 
       of node embeddings



Graph-level prediction tasks

𝒉𝑨
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(𝟐)

!!!!

𝒉𝑮 =	READOUT(𝒉𝑨
(𝟐), 𝒉𝑪

(𝟐), ---, 𝒉𝑭
(𝟐))

• Predict properties of a 
molecule (graph) 
where nodes are atoms 
and edges are chemical 
bonds
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Graph classification



So far, we have talked about..
1. Graph Neural Network
• Problem definition
• Skeleton

• Aggregation operation
• Transformation operation

2. Implementation
• Computation graph 
• Batch execution

3. Downstream tasks
• Node-level prediction
• Graph-level prediction
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Graph Neural Networks
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Should we aggregate 
all neighbors?

Graph Neural Networks - Width
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Graph Neural Networks - Depth
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Graph Neural Networks - Aggregation
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How should we 
aggregate 
neighbors?
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Graph Neural Network Architectures

• Width
• Which neighbors should we aggregate messages from?

• Depth
• How many hops should we check?

• Aggregation
• How should we aggregate messages from neighbors?
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Graph Neural Network Architectures

• Width
• Which neighbors should we aggregate messages from?

• Depth
• How many hops should we check?

• Aggregation
• How should we aggregate messages from neighbors?
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Aggregation Width in GNNs

• If we aggregate all neighbors, GNNs have scalability issues
• Neighbor explosion
• In 𝐿 -layer GNNs, one node aggregates information from 𝑂(𝐾3)

nodes where 𝐾 is the average number of neighbors per node
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Aggregation Width in GNNs

• If we aggregate all neighbors, GNNs have scalability issues
• Neighbor explosion
• Hub nodes who are connected to a huge number of nodes
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Aggregation Width in GNNs

• Limit the neighborhood expansion by sampling
a fixed number of neighbors
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……Sample the neighbors



Aggregation Width in GNNs

• Random sampling
• Assign same sampling probabilities to all neighbors
• GraphSage[4]

• Importance sampling
• Assign different sampling probabilities to all neighbors
• FastGCN[5], LADIES[6], AS-GCN[7], GCN-BS[8], PASS[9]
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[4] Will Hamilton, et al. “Inductive representation learning on large graphs”
[5] Jie Chen, et al. “Fastgcn: fast learning with graph convolutional networks via importance sampling”
[6] Difan Zou, et al. “Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks”
[7] Wenbing Huang, et al. “Adaptive sampling towards fast graph representation learning”
[8] Ziqi Liu, et al. “Bandit Samplers for Training Graph Neural Networks”
[9] Minji Yoon, et al. “Performance-Adaptive Sampling Strategy Towards Fast and Accurate Graph Neural Networks”



Aggregation Width in GNNs

Importance sampling
: assign higher sampling probabilities to neighbors who
• Minimize variance in sampling

• FastGCN[5], LADIES[6], AS-GCN[7], GCN-BS[8]
• Maximize GNN performance

• PASS[9]
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[4] Will Hamilton, et al. “Inductive representation learning on large graphs”
[5] Jie Chen, et al. “Fastgcn: fast learning with graph convolutional networks via importance sampling”
[6] Difan Zou, et al. “Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks”
[7] Wenbing Huang, et al. “Adaptive sampling towards fast graph representation learning”
[8] Ziqi Liu, et al. “Bandit Samplers for Training Graph Neural Networks”
[9] Minji Yoon, et al. “Performance-Adaptive Sampling Strategy Towards Fast and Accurate Graph Neural Networks”



Aggregation Width in GNNs
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• Node classification task on 7 different real-world graphs
• PASS outperforms all variance-minimizing methods by up to 10.4% 



Aggregation Width in GNNs
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Fraudster Unrelated 
neighbors

Real-world graphs are noisy!!



Graph Neural Network Architectures

• Width
• Which neighbors should we aggregate messages 

from?
• Depth
• How many hops should we check?

• Aggregation
• How should we aggregate messages from 

neighbors?
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Aggregation Depth in GNNs

• Informative neighbors could be indirectly connected with a 
target node
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Aggregation Depth in GNNs

• Informative neighbors could be indirectly connected with a 
target node
• Can’t we just look multiple hops away from the target node?
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Aggregation Depth in GNNs

• 2-layer or 3-layer GNNs are commonly used in real worlds
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Wasn’t it Deeeep Learning?



Aggregation Depth in GNNs

• When we increase the depth 𝐿 more than this, GNNs face 
neighbor explosion 𝑂(𝐾=)
• Over-smoothing
• Over-squashing
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……

…… ……



Aggregation Depth in GNNs
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Over-smoothing[10]
• When GNNs become deep,

nodes share many neighbors
• Node embeddings become indistinguishable

[10] Qimai Li, et al. “Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning”



Aggregation Depth in GNNs
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Over-smoothing[10]
• Node embeddings of Zachary’s karate club network with GNNs

[10] Qimai Li, et al. “Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning”



Aggregation Depth in GNNs
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Over-squashing[12]
• A node’s exponentially-growing neighborhood is compressed 

into a fixed-size vector

[12] Uri Alon, et al. “ON THE BOTTLENECK OF GRAPH NEURAL NETWORKS AND ITS PRACTICAL IMPLICATIONS”



Aggregation Depth in GNNs

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 72

Over-squashing[12]

[12] Uri Alon, et al. “ON THE BOTTLENECK OF GRAPH NEURAL NETWORKS AND ITS PRACTICAL IMPLICATIONS”

Hints

Depth



Aggregation Depth in GNNs
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[13] Hanqing Zeng, et al. “Decoupling the Depth and Scope of Graph Neural Networks”

Decoupling the two concepts of depths in GNNs[13]
• Depth-1: neighborhood that each node aggregates information from
• Depth-2: number of layers in GNNs



Aggregation Depth in GNNs
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[13] Hanqing Zeng, et al. “Decoupling the Depth and Scope of Graph Neural Networks”

Depth of neighborhood
(Depth-1)

Decoupling the two concepts of depths in GNNs[13]
• Depth-1: neighborhood that each node aggregates information from
• Depth-2: number of layers in GNNs



Aggregation Depth in GNNs
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[13] Hanqing Zeng, et al. “Decoupling the Depth and Scope of Graph Neural Networks”

…… Depth of GNN
(Depth-2)

Decoupling the two concepts of depths in GNNs[13]
• Depth-1: neighborhood that each node aggregates information from
• Depth-2: number of layers in GNNs

Depth of neighborhood
(Depth-1)



Graph Neural Network Architectures

• Width
• Which neighbors should we aggregate messages from?

• Depth
• How many hops should we check?

• Aggregation
• How should we aggregate messages from neighbors?
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Aggregation strategy in GNNs
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In each layer 𝑙	:

Aggregate over neighbors
𝑚4
(567) = 𝒇 5 ℎ4

567 , ℎ8
567 : 𝑢	 ∈ 	𝒩 𝑣

Transform messages
ℎ4
(5) = 𝒈 5 (𝑚4

567 )



Aggregation strategy in GNNs

• GCN[1]

• Average embeddings of neighboring nodes
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[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph convolutional networks."



Aggregation strategy in GNNs

• GAT[14]

• Different weights to different nodes in a neighborhood
• Multi-head attention

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 79

[14] Petar Veličković., et al. "GRAPH ATTENTION NETWORKS."



Aggregation strategy in GNNs
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In each layer 𝑙	:

Aggregate over neighbors
𝑚4
(567) = 𝒇 5 ℎ4

567 , ℎ8
567 : 𝑢	 ∈ 	𝒩 𝑣

Transform messages
ℎ4
(5) = 𝒈 5 (𝑚4

567 )

Any neural network module can fit in.
1-layer MLP is commonly used.

Core part of GNNs



Aggregation strategy in GNNs

Power of GNNs
=

Power of aggregation strategies 
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Aggregation strategy in GNNs

• By measuring the power of GNNs, we can find the best 
aggregation strategy!!
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Aggregation strategy in GNNs

• By measuring the expressive power of GNNs, we can find the 
best aggregation strategy!!
• But.. what is the power of GNNs and how can we measure it?
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Aggregation strategy in GNNs

• How powerful are Graph Neural Networks?[2]
• Metric
• Graph-level prediction task 
• Can a GNN model distinguish two non-isomorphic graphs?

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 84

[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”



Aggregation strategy in GNNs

• How powerful are Graph Neural Networks?[2]
• Metric
• Graph-level prediction task 
• Can a GNN model distinguish two non-isomorphic graphs?

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 85

[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”



Aggregation strategy in GNNs

• How powerful are Graph Neural Networks?[2]
• Metric
• Graph-level prediction task
• Can a GNN model distinguish two non-isomorphic graphs? 
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[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”

≠=



Aggregation strategy in GNNs

• How powerful are Graph Neural Networks?[2]
• Any aggregation-based GNN is at most as powerful as the WL test[15]
• Maximum power = aggregation strategy is injective
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[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”
[15] Boris Weisfeiler and AA Leman. “A reduction of a graph to a canonical form and an algebra arising during this reduction”

𝒇 𝒙𝟏 = 𝒇 𝒙𝟐 ⇒ 𝒙𝟏 = 𝒙𝟐



Aggregation strategy in GNNs

• How powerful are Graph Neural Networks?[2]
• Any aggregation-based GNN is at most as powerful as the WL test[15]
• Maximum power = aggregation strategy is injective 
• (ex) summation
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[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”
[15] Boris Weisfeiler and AA Leman. “A reduction of a graph to a canonical form and an algebra arising during this reduction”

Mean and Max both fail, while Sum can distinguish them!!



Aggregation strategy in GNNs

• Can we make more powerful GNNs?
• Very active area, with many open problems
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Aggregation strategy in GNNs

• Homophily assumption
• Connected nodes are similar/related/informative
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Aggregation strategy in GNNs

• Homophily assumption
• Connected nodes are similar/related/informative

• How can we deal with heterophilous networks?[21,22]
• Connected nodes have different class labels and dissimilar features
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[21] Jiong Zhu., et al. "Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs”
[22] Yao Ma, et al. “IS HOMOPHILY A NECESSITY FOR GRAPH NEURAL NETWORKS?”



Aggregation strategy in GNNs

• Heterophilous graph datasets 
have serious drawbacks[23]

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 97
[23] Oleg Platonov., et al. "A critical look at the evaluation of GNNs under heterophily: are we really making progress?”

Improved accuracy 
after filtering datasets

Datasets have 
some problems!!



So far, we have talked about..

1. Graph Neural Network
• Problem definition
• Skeleton: aggregation, transformation operations

2. Research questions in GNN architectures
• Width
• Depth
• Aggregation

3. GNN training strategy
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How to train GNNs

• Semi-supervised learning
• Input node features are given for all nodes in a graph
• Only a subset of nodes have labels 
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How to train GNNs

• Unsupervised learning[26]
• Contrastive learning
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[26] Petar Veličković., et al. "DEEP GRAPH INFOMAX"

Corrupted graph

Original graph



How to train GNNs

• Transfer learning
• Transfer a pre-trained GNN model between graphs[27]
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[27] Jiezhong Qiu, et al. "GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training"

Pre-trained GNN 𝒇

Facebook network DBLP co-authorship network



How to train GNNs

• Transfer learning
• Transfer between different node types across a heterogeneous graph[28]
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[28] Minji Yoon, et al. "Zero-shot Domain Adaptation of Heterogeneous Graphs via Knowledge Transfer Networks "



Impactful applications in science

• GNNs for molecule classification
• Molecule
• Node: atoms 
• Edge: bonds
• Input features: atom type, charge, bond type
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(slide: P. Veličković)



Impactful applications in science

• Graph-level prediction: whether the molecule is a potent drug[29]

• Binary classification on whether the drug will inhibit certain bacteria

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 108

(slide: P. Veličković)

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”



Impactful applications in science

• Graph-level prediction: whether the molecule is a potent drug[29]

• Execute on a large dataset of known candidate molecules
• Select the ~ top-100 candidates from the GNN model
• Have chemists thoroughly investigate those
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(slide: P. Veličković)

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”



Impactful applications in science

• Discover a previously overlooked compound that is a highly 
potent antibiotic[29]
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(slide: P. Veličković)

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”



Impactful applications in science
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(slide: P. Veličković)

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”



So far, we have talked about..

1. Graph Neural Network
2. Research questions in GNN architectures
3. GNN training strategy
4. Applications in science
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So far, we have talked about..

1. Graph Neural Network
2. Research questions in GNN architectures
3. GNN training strategy
4. Applications in science
5. Recent Directions inspired by other disciplines
• How to apply Transformers to graphs
• How to utilize Large Language Models (LLMs) for graph tasks
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Advanced



Graph Transformer

• Limitations of GNN
• Hard-coded structural inductive bias
• Limited expressiveness (WL-test)
• Oversmoothing
• Oversquashing
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Graph Transformer

• Aggregate from all nodes in a graph regardless of their 
connectivity
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B

A C F

E
D

…  Are we going to 
throw away the graph 

information?



Graph Transformer

• Graphormer[27]
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[27] Chengxuan Ying, et al. "Do Transformers Really Perform Bad for Graph Representation?"

Degree information

Spatial distance information
Edge attribute information 



Graph Transformer

• GraphTrans[28]
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[28] Zhanghao Wu, et al. "Representing Long-Range Context for Graph Neural Networks with Global Attention"

Local information Global information



Graph Transformer

• TokenGT[29]
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[29] Jinwoo Kim, et al. "Pure Transformers are Powerful Graph Learners"



LLM + GNN

• Large Language Model (LLM)
• ”Inflection point in AI”, “Dawn of Artificial General Intelligence”
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LLM + GNN

• Large Language Model (LLM)
• ”Inflection point in AI”, “Dawn of Artificial General Intelligence”
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Can we improve GNN 
using LLMs?



LLM + GNN
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[30] Eli Chien, et al. "Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction"

• GIANT[30]



LLM + GNN
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[31] Jianan Zhao, et al. "Learning on Large-scale Text-attributed Graphs via Variational Inference"

• GLEM[31]



LLM + GNN
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[32] Xiaoxin He, et al. "Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning"

• TAPE[32]



• And many more chances to do groundbreaking research
• Diverse types of graphs
• 3-dimensional graphs
• Temporal graphs
• Multimodal graphs

• Diverse types of architecture
• Graph Convolution Networks
• Graph Transformers
• LLMs
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Still many open problems..



Thank you!

Questions?
minjiy@cs.cmu.edu  | https://www.minjiyoon.xyz
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