10417/10617

Vision Transformer: Attention is all you need

Convolution Neural Network

- So far, we have been focusing on using convolution neural networks for vision.
- Advantage: Convolution is a local operation, it is fast and parameter-efficient.
- Disadvantage: Convolution is a local operation, it can not capture global relations efficiently.
	- It is hard to use convolution on images with large global dependencies, or videos with longtime dependencies.

From Convolution to Vision Transformer

- Vision Transformer:
	- Still mainly uses local operation.
	- Add a "global attention" layer to gather information globally.

Vision Transformer

- Basic structure of ViT:
- Step 1, divide the input images $(d \times d \times C)$ into (d^2/p^2) (disjoint) patches, each of size ($p \times p \times C$).
- Step 2:
	- Step 2.1. For each patch, flatten it, apply an MLP on it, and get an output of size d_{emb}
	- Step 2.2. For each vector on each patch, "mix" them together, to create new vectors on each patch.
- Repeat Step 2.

Vision Transformer

 $+$

 \overline{O}

- The mixing operation is called "selfattention".
- Given vectors $v_1, v_2, ..., v_n$ on n patches, each of dimension D, a self-attention operator returns vectors $v'_1, v'_2, ..., v'_n$, each of dimension D.
- $v'_i = \sum_j \alpha_{i,j} v_j$ as a weighted average of the input vectors v's.
- $\alpha_{i,j}$ are also functions of $v_1, v_2, ..., v_n$.

Attention Layer

- $v'_{i} = \sum_{j} \alpha_{i,j} v_{j}$ as a weighted average of the input vectors v's.
	- Thus, for each i , the network mixes information from other j's to get the new output.
- $\alpha_{i,j}$ are also functions of v_1, v_2, \dots, v_n .
	- What functions?

Self Attention Layer

- Given vectors $v_1, v_2, ..., v_n$, each in R^d , a self attention layer is defined as:
- $v'_i = V^T \sum_i \alpha_{i,i} v_i$
- Where $(\alpha_{i,j})_{j \in [n]} = \: softmax(v_i^T Q K^T v_j + p_{i,j})_{j \in [n]}$
- Here, Q is called the query matrix, K is called the key matrix, V is called the value matrix. They are all of dimension $d \times m$.
	- So, each v_i looks for the "most similar v_i , when projected to Q and K".
- $p_{i,j}$ is a bias term, also known as "relative positional encoding".
- They are all trainable.

Self Attention versus Convolution

- Convolution can be viewed as:
	- $v'_i = V^T \sum_i \alpha_{i,i} v_i$
	- Where $\alpha_{i,j}$ are parameters only depending on the index i , j.
	- $\alpha_{i,j}$ are non-zero only when i is "close" to j.
- Self-attention:
	- $(\alpha_{i,j})_{j \in [n]}$ = softmax $(v_i^T Q K^T v_j + p_{i,j})_{j \in [n]}$ is a function of v_i 's.
	- Can be large even if index i is "far" from j.
- But can self-attention simulate a convolution?

Self-Attention can learn convolution

- If the ground-truth function is a convolution, then doing gradient descent on a selfattention layer can recover the convolution structure.
	- See the work [Samy Jelassi and Yuanzhi Li, 2022]: How vision transformer learns the patch associations.
- Intuitively, the network just learns $\left(\alpha_{i,j}\right)_{j\in[n]}=softmax(p_{i,j})_{j\in[n]}$
- Where $p_{i,j}$ is more positive if index i is "closer" to index j.

Self-Attention can associate patches

- A function that can be easily represented by self-attention, but not convolution is the "association" function (suppose each v_i has norm one):
- $f_1(v_1, v_2, ..., v_n) = \sum_i v_i 1_{v_i = Uv_1}$
- Can be represented using $QK^T = \alpha U^{-1}$ for a large α .
- $(\alpha_{1,j})_{j \in [n]}$ = softmax $(\alpha v_1^TU^{-1}v_j)_{j \in [n]}$

Self-Attention can associate patches

• An function that can be easily represented by self-attention, but not convolution is the "double if" function (suppose each v_i has norm one):

•
$$
f_1(v_1, v_2, ..., v_n) = \sum_i 1_{v_1 = a, v_j = b}
$$

• Can be represented using $QK^T = \alpha a b^T$ for a large α .

•
$$
(\alpha_{1,j})_{j \in [n]}
$$
 = softmax $(\alpha(\nu_1^T a)(b^T \nu_j))_{j \in [n]}$

Self-attention is more powerful than convolution

Self-attention is more powerful than convolution

attend to each other to identify its a missile

Multi-Head Attention Layer

- The most fundamental layer in the transformer: Multi-head attention.
- Given vectors v_1 , v_2 , ..., v_n , each in R^d , a multi-head attention layer is defined as:
- \blacktriangleright $v'_i = C \times concatenate(V_r \sum_j \alpha_{i,j}^r v_j)_{r \in [d/m]} + b$
- \blacktriangleright Where $\left(\alpha_{i,j}^r\right)$ $\n _J\in\n _I\n$ $= \; \mathit{softmax}\big(v_i^T Q_r K_r^T v_j + p_{i,j}^r\big)$ $\n _J\in\n _I\n$
- Here, C is a $d \times d$ trainable matrix.
- Each v_i looks for the "most similar v_i , according to [d/m] many projection matrices Q_r and K_r .

Transformer Architecture

- A (post-layernorm) transformer block is defined as:
- Given input $V = \mathcal{V}_1$, \mathcal{V}_2 , ..., \mathcal{V}_n , each v_i in R^d .
	- (1). Apply Multi-Head Attention (input dimension d, output dimension d) on *V* to get $V^{(1)} = v_1^{(1)}, v_2^{(1)}, ..., v_n^{(1)}$.
	- $\;\;\;\;\;$ (2). Apply layer-norm on each of the $v^{(1)}_i$ to get $v_i^{(2)}$.
	- (3). Apply residual link: $v_i^{(3)} = v_i^{(2)} + v_i$.
	- (4). Apply a one hidden layer MLP h (input dimension d, output dimension d) on each $v_i^{(3)}$ to get $v_i^{(4)} = h(v_i^{(3)})$ (all the $v^{\prime\prime\prime}_i$ in the uses the same h per layer, different h for different layers).
	- (5). Apply layer-norm on each of the $v_i^{(4)}$ to get $v_i^{(5)}$.
	- (6). Apply residual link: $v_i^{(6)} = v_i^{(5)} + v_i^{(3)}$.

• The output
$$
V^{(6)} = \mathcal{V}_1^{(6)}
$$
, $\mathcal{V}_2^{(6)}$, ..., $\mathcal{V}_n^{(6)}$, each $v_i^{(6)}$ in \mathbb{R}^d .

Transformer Architecture

- A (pre-layernorm) transformer block is defined as:
- Given input $V = V_1$, V_2 , ..., V_n , each v_i in R^d .
	- (1). Apply layer-norm on each of the v_i to get $v_i^{(1)}$.
	- ▶ (2). Apply Multi-Head Attention on $V^{(1)}$ to get $V^{(2)} = v_1^{(2)}, v_2^{(2)}, ..., v_n^{(2)}$.
	- (3). Apply residual link: $v_i^{(3)} = v_i^{(2)} + v_i$.
	- (4). Apply layer-norm on each of the $v_i^{(3)}$ to get $v_i^{(4)}$.
	- **►** (5). Apply a one hidden layer MLP h on each $v_i^{(4)}$ to get $v_i^{(5)} = h(v_i^{(4)})$ (all the v_i'' in the uses the same h per layer, different h for different layers).
	- (6). Apply residual link: $v_i^{(6)} = v_i^{(5)} + v_i^{(3)}$.

Transformer Architecture

- A Vision Transformer consists of:
- 1. An embedding layer (linear layer), maps each input patch to a vector + layer-normalization.
- 2. Many transformer blocks.
- 3. A Flatten + Linear/MLP layer on top for classification.

VIT Large (the original vision transformer)

- Convert input image to 16x16 total patches (total 256 vectors).
- For each patch, apply an embedding layer to map it to dimension 1024.
- Apply 24 transformer blocks, each transformer block has a one-hiddenlayer MLP of size 1024 -> 4096 -> 1024.
	- Each transformer block as a Multi-Head Attention layer with 16 heads.
- Total 307M parameters (very small for a transformer).

