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Neural Network for Vision Part III



Vision Language Models

• One of the most impressive achievements recently is vision language 
models. (Generation from phi-1.5-vision, a 1.3B parameter vision 
language model)



So how do we 
get such a 
model?

• There are three parts: 

• Vision encoding part →  
We will partially cover 
today.

• Language modeling part 
→ We will partially cover 
today (transformer 
models).

• Vision and language 
connection part → We 
leave for the future 
(multi-modality).



Vision Encoder

A vision encoder is a network that maps a given image to a vector.

The vector “encodes” the image in a more “decodable” way.

For example, we can apply a linear function over the vector to classify its labels.

• You can think of one “encoder” as the last hidden layer in a convolution network.

For example, we can apply some simple functions to the encoding to perform 
objects segmentation.



Vision Encoder

• How do we train a vision encoder?

• One way: We can train a convolution neural network for image classification, and take 
its last hidden layer.

• Disadvantage: The vision encoder is only good for images similar to the training image, 
not good for some general images on the internet.



Vision 
Encoder

• How do we get a vision encoder that is good for all (or most of) 
the images on the internet?

• We do not have labels for a (vast) majority of those images (we 
can’t even label them).

• We need to train a good “image encoder” without any labels 
on those images.

• How??? We have no idea about those images, and we 
want to train a good encoder to encode good ideas (good 
features) about those images…

• Well, it is doable (like magic). Although the method is still 
not really well understood even today…



Contrastive Learning for Vision Encoder

• The idea is to apply contrastive learning here. The famous method is called SimCLR (Hinton et al. 2021).

• Given a vast amount of training images 𝑥(1), 𝑥(2), … , 𝑥 𝑛  (without labels), the contrastive loss is defined as:

• 𝑚𝑖𝑛ℎ
1

N
σ𝑖 − log

 exp{<ℎ 𝑥 𝑖 ,ℎ(𝑎𝑢𝑔 𝑥 𝑖 )>/𝜏}

1

𝑚
σ𝑗∈𝑆𝑚

 exp{<ℎ 𝑥 𝑖 ,ℎ 𝑥(𝑗) >/𝜏}

• Here, 𝜏 is the temperature, and aug(x) means the augmentation of x.

• 𝑆𝑚 is a random sample of batches of m images from 𝑥(1), 𝑥(2), … , 𝑥 𝑛  (without 𝑥(𝑖)).

• h is usually a convolution neural network.

• The output of h is a vector, and it is layer-normalized (so it has norm one).



Contrastive Loss

•
1

N
σ𝑖 − log

 exp{<ℎ 𝑥 𝑖 ,ℎ 𝑎𝑢𝑔 𝑥 𝑖 >/𝜏}
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𝑚
σ𝑗∈𝑆𝑚

 exp{<ℎ 𝑥 𝑖 ,ℎ 𝑥(𝑗) >/𝜏}

• To minimize this loss, we want:

• ℎ 𝑥 𝑖  is close to ℎ(𝑎𝑢𝑔 𝑥(𝑖) ), so the output of the vision encoder is robust under 
data augmentation.

•  exp{ < ℎ 𝑥 𝑖 , ℎ 𝑥(𝑗) >/𝜏} is small, so ℎ 𝑥 𝑖  should (not be correlated)/(anti 
correlated) with ℎ 𝑥 𝑗  for different images.

• So we just need a diversed set of features robust to data augmentation… and that’s it.



The power of contrastive learned features

• After getting contrastive learned features h(x), how do we test 
whether it is good?

• One way is to train a linear function on top of it, and see how does 
𝑓 𝑥 =< 𝑤, ℎ(𝑥) > perform to classify the labels of the images.

Baseline: Linear function over randomly initialized h 

 Less than 10% accuracy.



Neural 
Network for 

Video 
Classification

• Now we learned image 
classification, can we actually use 
neural networks for video 
classification?

• Video can be viewed as a 4d 
tensor, 𝑑 × 𝑑 × 𝐶 × 𝑇

• There is an additional time 
dimension T.



Neural 
Network for 
Video 
Classification

• There are two different approaches 
to solve this:
• Using a standard convolution 

network + LSTM/Transformer to 
process sequential input (will be 
covered in later lectures).

• Using a  3D convolution network.



3D 
convolution.

• Given an input  x ∈ 𝑑 × 𝑑 × 𝐶 × 𝑇, 
a 3D convolution opeartion is defined 
as:

• 𝑦 𝑖, 𝑗, 𝑘, 𝑟 =
σ𝑟,𝑠∈ 𝑝 ,𝑡∈[𝑃],𝑙∈[𝐶] 𝑤 𝑟, 𝑠, 𝑘, 𝑙, 𝑡 𝑥[

]
𝑚 ×

𝑖 + 𝑟, 𝑚 × 𝑗 + 𝑠, 𝑙, 𝑚 × 𝑟 + 𝑡 + 𝑏[𝑘]

• W is of size 𝑝 × 𝑝 × 𝐶′ × 𝐶 × 𝑃

• So it is applying convolutions on 3D: 
𝑑 × 𝑑 × 𝑇.



Neural Network for Vision
From Convolution to Vision-
Transformer

Is the convolution 
network still used 
today?

Not at all in most of 
the frontier 
applications…

It is completely 
replaced by Vision 
Transformer (ViTs) 
that was introduced 
in 2021.

Why?

成也convolution,败也
convolution…



Neural Network 
for Vision
From Convolution 
to Vision-
Transformer

• 成也convolution,败也convolution…

• One good side that allows convolution to outperform MLP is also the 
downside that lets convolution losses to transformer completely…

• Good side about convolution: Convolution is a local operation, so its 
parameter count is kernel_size x kernel_size x in_channel x out_channel 
(regardless of the input size).



From Convolution to 
Vision-Transformer

• Good side about convolution: Convolution is a local operation, so its parameter count is 
kernel_size x kernel_size x in_channel x out_channel (regardless of the input size). 

• So it is more sample/computation efficient.

• Bad side: However, convolution is a local operation, so it can not capture the global 
information of the image very well.



From Convolution to Vision-Transformer

• Far away correlations in the image might get lost in a convolution 
network.



Vision-
Transformer

• Question: Can we design an architecture that does local 
operations, but still keeps the global information?

• This is the intuition behind vision transformer.



Vision-Transformer

Idea behind Vision Transformer

We would like to apply the same local operations 
on the patches of the image (to be computation 
efficient and reduce the number of parameters).

We would like to have some “global operations” 
that mix features from far away patches.

Such an architecture is called a 
transformer.



Vision Transformer

• Basic structure of ViT:

• Step 1, divide the input images (𝑑 × 𝑑 × 𝐶) into (𝑑2/𝑝2) (disjoint )patches, each of size (𝑝 ×
𝑝 × 𝐶).

• Step 2:

• Step 2.1. For each patch, flatten it, apply an MLP on it, and get an output of size 𝑑𝑒𝑚𝑏

• Step 2.2. For each vector on each patch, “mix” them together, to create new vectors on 
each patch.

• Repeat Step 2.



Vision-Transformer

• Step 2.1 is easy, but what is step 2.2?

• The mixing operation is called “self-attention”. 

• Given vectors 𝑣1, 𝑣2, … , 𝑣𝑛 on n patches, each of dimension D, a self-attention 
operator returns vectors 𝑣′1, 𝑣′2, … , 𝑣′𝑛 , each of dimension D.

• 𝑣′𝑖 = σ𝑗 𝛼𝑖,𝑗𝑣𝑗 as a weighted average of the input vectors v’s.



Vision Transformer:

• Input image of size (𝑑 × 𝑑 × 𝐶) 

• -> Divided into (𝑑2/𝑝2)  patches, flatten each patch to be a vector in 𝑝2𝐶.

• -> Linear layer on each patch (to increase the dimension to 𝑑𝑒𝑚𝑏).

• (-> Self-attention on all the vectors -> apply the same one-hidden-layer-MLP per layer 
on each and every vector)xL

• -> flatten -> one-hidden-layer MLP 

• This is called a L-layer vision transformer.
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