
10417/10617
Neural Network for Vision Part III

Vision Language Models

• One of the most impressive achievements recently is vision language
models. (Generation from phi-1.5-vision, a 1.3B parameter vision
language model)

So how do we
get such a
model?

• There are three parts:

• Vision encoding part →
We will partially cover
today.

• Language modeling part
→ We will partially cover
today (transformer
models).

• Vision and language
connection part → We
leave for the future
(multi-modality).

Vision Encoder

A vision encoder is a network that maps a given image to a vector.

The vector “encodes” the image in a more “decodable” way.

For example, we can apply a linear function over the vector to classify its labels.

• You can think of one “encoder” as the last hidden layer in a convolution network.

For example, we can apply some simple functions to the encoding to perform
objects segmentation.

Vision Encoder

• How do we train a vision encoder?

• One way: We can train a convolution neural network for image classification, and take
its last hidden layer.

• Disadvantage: The vision encoder is only good for images similar to the training image,
not good for some general images on the internet.

Vision
Encoder

• How do we get a vision encoder that is good for all (or most of)
the images on the internet?

• We do not have labels for a (vast) majority of those images (we
can’t even label them).

• We need to train a good “image encoder” without any labels
on those images.

• How??? We have no idea about those images, and we
want to train a good encoder to encode good ideas (good
features) about those images…

• Well, it is doable (like magic). Although the method is still
not really well understood even today…

Contrastive Learning for Vision Encoder

• The idea is to apply contrastive learning here. The famous method is called SimCLR (Hinton et al. 2021).

• Given a vast amount of training images 𝑥(1), 𝑥(2), … , 𝑥 𝑛 (without labels), the contrastive loss is defined as:

• 𝑚𝑖𝑛ℎ
1

N
σ𝑖 − log

 exp{<ℎ 𝑥 𝑖 ,ℎ(𝑎𝑢𝑔 𝑥 𝑖)>/𝜏}

1

𝑚
σ𝑗∈𝑆𝑚

 exp{<ℎ 𝑥 𝑖 ,ℎ 𝑥(𝑗) >/𝜏}

• Here, 𝜏 is the temperature, and aug(x) means the augmentation of x.

• 𝑆𝑚 is a random sample of batches of m images from 𝑥(1), 𝑥(2), … , 𝑥 𝑛 (without 𝑥(𝑖)).

• h is usually a convolution neural network.

• The output of h is a vector, and it is layer-normalized (so it has norm one).

Contrastive Loss

•
1

N
σ𝑖 − log

 exp{<ℎ 𝑥 𝑖 ,ℎ 𝑎𝑢𝑔 𝑥 𝑖 >/𝜏}

1

𝑚
σ𝑗∈𝑆𝑚

 exp{<ℎ 𝑥 𝑖 ,ℎ 𝑥(𝑗) >/𝜏}

• To minimize this loss, we want:

• ℎ 𝑥 𝑖 is close to ℎ(𝑎𝑢𝑔 𝑥(𝑖)), so the output of the vision encoder is robust under
data augmentation.

• exp{ < ℎ 𝑥 𝑖 , ℎ 𝑥(𝑗) >/𝜏} is small, so ℎ 𝑥 𝑖 should (not be correlated)/(anti
correlated) with ℎ 𝑥 𝑗 for different images.

• So we just need a diversed set of features robust to data augmentation… and that’s it.

The power of contrastive learned features

• After getting contrastive learned features h(x), how do we test
whether it is good?

• One way is to train a linear function on top of it, and see how does
𝑓 𝑥 =< 𝑤, ℎ(𝑥) > perform to classify the labels of the images.

Baseline: Linear function over randomly initialized h

 Less than 10% accuracy.

Neural
Network for

Video
Classification

• Now we learned image
classification, can we actually use
neural networks for video
classification?

• Video can be viewed as a 4d
tensor, 𝑑 × 𝑑 × 𝐶 × 𝑇

• There is an additional time
dimension T.

Neural
Network for
Video
Classification

• There are two different approaches
to solve this:
• Using a standard convolution

network + LSTM/Transformer to
process sequential input (will be
covered in later lectures).

• Using a 3D convolution network.

3D
convolution.

• Given an input x ∈ 𝑑 × 𝑑 × 𝐶 × 𝑇,
a 3D convolution opeartion is defined
as:

• 𝑦 𝑖, 𝑗, 𝑘, 𝑟 =
σ𝑟,𝑠∈ 𝑝 ,𝑡∈[𝑃],𝑙∈[𝐶] 𝑤 𝑟, 𝑠, 𝑘, 𝑙, 𝑡 𝑥[

]
𝑚 ×

𝑖 + 𝑟, 𝑚 × 𝑗 + 𝑠, 𝑙, 𝑚 × 𝑟 + 𝑡 + 𝑏[𝑘]

• W is of size 𝑝 × 𝑝 × 𝐶′ × 𝐶 × 𝑃

• So it is applying convolutions on 3D:
𝑑 × 𝑑 × 𝑇.

Neural Network for Vision
From Convolution to Vision-
Transformer

Is the convolution
network still used
today?

Not at all in most of
the frontier
applications…

It is completely
replaced by Vision
Transformer (ViTs)
that was introduced
in 2021.

Why?

成也convolution,败也
convolution…

Neural Network
for Vision
From Convolution
to Vision-
Transformer

• 成也convolution,败也convolution…

• One good side that allows convolution to outperform MLP is also the
downside that lets convolution losses to transformer completely…

• Good side about convolution: Convolution is a local operation, so its
parameter count is kernel_size x kernel_size x in_channel x out_channel
(regardless of the input size).

From Convolution to
Vision-Transformer

• Good side about convolution: Convolution is a local operation, so its parameter count is
kernel_size x kernel_size x in_channel x out_channel (regardless of the input size).

• So it is more sample/computation efficient.

• Bad side: However, convolution is a local operation, so it can not capture the global
information of the image very well.

From Convolution to Vision-Transformer

• Far away correlations in the image might get lost in a convolution
network.

Vision-
Transformer

• Question: Can we design an architecture that does local
operations, but still keeps the global information?

• This is the intuition behind vision transformer.

Vision-Transformer

Idea behind Vision Transformer

We would like to apply the same local operations
on the patches of the image (to be computation
efficient and reduce the number of parameters).

We would like to have some “global operations”
that mix features from far away patches.

Such an architecture is called a
transformer.

Vision Transformer

• Basic structure of ViT:

• Step 1, divide the input images (𝑑 × 𝑑 × 𝐶) into (𝑑2/𝑝2) (disjoint)patches, each of size (𝑝 ×
𝑝 × 𝐶).

• Step 2:

• Step 2.1. For each patch, flatten it, apply an MLP on it, and get an output of size 𝑑𝑒𝑚𝑏

• Step 2.2. For each vector on each patch, “mix” them together, to create new vectors on
each patch.

• Repeat Step 2.

Vision-Transformer

• Step 2.1 is easy, but what is step 2.2?

• The mixing operation is called “self-attention”.

• Given vectors 𝑣1, 𝑣2, … , 𝑣𝑛 on n patches, each of dimension D, a self-attention
operator returns vectors 𝑣′1, 𝑣′2, … , 𝑣′𝑛 , each of dimension D.

• 𝑣′𝑖 = σ𝑗 𝛼𝑖,𝑗𝑣𝑗 as a weighted average of the input vectors v’s.

Vision Transformer:

• Input image of size (𝑑 × 𝑑 × 𝐶)

• -> Divided into (𝑑2/𝑝2) patches, flatten each patch to be a vector in 𝑝2𝐶.

• -> Linear layer on each patch (to increase the dimension to 𝑑𝑒𝑚𝑏).

• (-> Self-attention on all the vectors -> apply the same one-hidden-layer-MLP per layer
on each and every vector)xL

• -> flatten -> one-hidden-layer MLP

• This is called a L-layer vision transformer.

	Slide 1: 10417/10617
	Slide 2: Vision Language Models
	Slide 3: So how do we get such a model?
	Slide 4: Vision Encoder
	Slide 5: Vision Encoder
	Slide 6: Vision Encoder
	Slide 7: Contrastive Learning for Vision Encoder
	Slide 8: Contrastive Loss
	Slide 9: The power of contrastive learned features
	Slide 10: Neural Network for Video Classification
	Slide 11: Neural Network for Video Classification
	Slide 12: 3D convolution.
	Slide 13: Neural Network for Vision From Convolution to Vision-Transformer
	Slide 14: Neural Network for Vision From Convolution to Vision-Transformer
	Slide 15: From Convolution to Vision-Transformer
	Slide 16: From Convolution to Vision-Transformer
	Slide 17: Vision-Transformer
	Slide 18: Vision-Transformer
	Slide 19: Vision Transformer
	Slide 20: Vision-Transformer
	Slide 21: Vision Transformer:

