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Neural Network for Vision Part II



Neural Network for 
Image Classification

• So we learned convolution neural network.

• Given training images 𝑥𝑥(1), 𝑥𝑥(2), … , 𝑥𝑥(𝑛𝑛), and their 
corresponding labels 𝑦𝑦(1),𝑦𝑦(2), … ,𝑦𝑦 𝑛𝑛 .



Neural Network for 
Image Classification

• We can use a convolution network W to minimize 
the empirical risk:

• min
𝑊𝑊

1
𝑁𝑁
∑𝑖𝑖∈[𝑁𝑁] 𝑙𝑙 ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 + 𝑅𝑅(𝑊𝑊)

• How do we test if the training works well or not?



Test accuracy

• After training, we can test the performance of a neural network using new 
images 𝑥𝑥𝑥(1), 𝑥𝑥𝑥(2), … , 𝑥𝑥′ 𝑚𝑚  and their labels 𝑦𝑦𝑥(1),𝑦𝑦𝑥(2), … ,𝑦𝑦′ 𝑛𝑛 , and test to 
see if the trained neural network can predict the labels of the new ones:

•  ℎ(𝑊𝑊, 𝑥𝑥𝑥(𝑖𝑖)) ≈ 𝑦𝑦′(𝑖𝑖)

• For example, if ℎ(𝑊𝑊, 𝑥𝑥 ) ∈ 𝑅𝑅𝐾𝐾, and 𝑦𝑦 ∈ [𝐾𝐾], then we want to test if 
• 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑘𝑘∈[𝐾𝐾]ℎ𝑘𝑘(𝑊𝑊, 𝑥𝑥𝑥(𝑖𝑖))  =  𝑦𝑦′(𝑖𝑖)



Test accuracy

• After we minimize the training loss:
• min

𝑊𝑊
1
𝑁𝑁
∑𝑖𝑖∈[𝑁𝑁] 𝑙𝑙 ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 + 𝑅𝑅(𝑊𝑊)

• So that ℎ(𝑊𝑊, 𝑥𝑥(𝑖𝑖)) ≈ 𝑦𝑦(𝑖𝑖)

• Does it mean that for new images
• ℎ(𝑊𝑊, 𝑥𝑥𝑥(𝑖𝑖)) ≈ 𝑦𝑦′(𝑖𝑖) ?

• In other words, does the trained neural network generalizes its prediction 
power from training dataset to test dataset?



Generalization versus Memorization
• Let us consider a simple problem, where the true label is 𝑦𝑦 =  𝑥𝑥1 (the first coordinate of 

x)
• The neural network that generalizes: 

• ℎ 𝑊𝑊, 𝑥𝑥 ≈ 𝑥𝑥1 for every x.
• The neural network that minimalizes the training loss but does not generalize:

• ℎ 𝑊𝑊, 𝑥𝑥 = ∑𝑖𝑖 ∈[𝑛𝑛] 𝑥𝑥1
(𝑖𝑖)1𝑥𝑥=𝑥𝑥(𝑖𝑖)

• In fact, its very easy for a neural network to represent this sum of indicator function, 
using two-layer ReLU network.



Neural Network for Image Classification

How do we make sure that after training a convolution network, it “generalizes” 
to new images, instead of simply memorizing a bunch of “if” statements for the 
training images?

Solution 1: Reduce the number of 
parameters of the neural network

Not a good solution, neural network is 
performing “feature learning”, we need a large 
number of neurons to represent certain features.

Solution 2: Increase the number of training examples.



Data 
augmentation

Can we increase the number of training 
examples without getting more labeled images?

Solution: Data augmentation.

Solution 2: Increase the number of training 
examples.

We can use human labelers to 
label more images …



Data 
augmentation

We can bootstrap a lot 
more images from the 
original one while keeping 
the labels to be the same.

This is called data 
augmentation for images.



Data 
augmentation

• We can add the augmented new images (with their 
labels) to the training dataset.



Contrastive Learning

• What does a neural network that learns ℎ 𝑊𝑊, 𝑥𝑥 = ∑𝑖𝑖 ∈[𝑛𝑛]𝑦𝑦(𝑖𝑖)1𝑥𝑥=𝑥𝑥(𝑖𝑖)  look 
like?

• Key observation: The hidden embedding of the last layer ℎ𝐿𝐿(𝑥𝑥) should have 
low diversity (because only a linear function is applied on top). 

• For example, ℎ𝐿𝐿 𝑥𝑥 = 𝑣𝑣𝑖𝑖 1𝑥𝑥=𝑥𝑥(𝑖𝑖)  for some vectors 𝑣𝑣𝑖𝑖 .



Feature diversity
• We want to make sure that features in ℎ𝐿𝐿 𝑥𝑥  are as diverse as possible.
• Good ℎ𝐿𝐿 𝑥𝑥  

• (There is a wheel?, There is a window? , There are furs?, Color = Blue?, There are 
wings? There are tails? There are horns? , Length of the legs?, ….)

• A diverse set of features.
• We want the cardinality of  ℎ𝐿𝐿 𝑥𝑥  to be as large as possible, in other words, ℎ𝐿𝐿 𝑥𝑥   

should span the entire space, instead of just being a small set of fixed vectors.



Contrastive Learning
• How do we make sure that ℎ𝐿𝐿 𝑥𝑥   is diverse?
• Intuition: Given two different images x, x’, ℎ𝐿𝐿 𝑥𝑥   should be as 

different from ℎ𝐿𝐿 𝑥𝑥𝑥  as possible.  
• Contrastive loss: We want to minimize |< ℎ𝐿𝐿 𝑥𝑥  , ℎ𝐿𝐿 𝑥𝑥𝑥  >| 

for two different images x, x’.
• Key observation: We don’t need the labels of these images x, 

x’! We can randomly sample them from the internet.



Contrastive 
Learning

• Contrastive Loss:

• Minimize 𝐸𝐸𝑥𝑥,𝑥𝑥′exp(< ℎ𝐿𝐿 𝑥𝑥
ℎ𝐿𝐿 𝑥𝑥 2

, ℎ𝐿𝐿 𝑥𝑥′

ℎ𝐿𝐿 𝑥𝑥′ 2
>

/𝜏𝜏)

• Theorem: At the minimizer, ℎ𝐿𝐿 𝑥𝑥
ℎ𝐿𝐿 𝑥𝑥 2

 is a 

uniform distribution over the sphere. 



Neural Network for 
Image Segmentation

• Another important application is image 
segmentation.

• We want to locate each object in the 
image. 



Neural Network for Image Segmentation

• Using a fully convolutional network (FCN).
• Every layer is a convolution, with no MLP/linear layer on top.
• Input is an image, and output is another image.
• Classify each pixel based on its segment.



Neural Network for image 
completion

Given a cropped image, can 
we use a neural network to 
complete the cropped part?



Neural Network for 
image completion

• The most common way to use a neural network for 
image completion is to use a convolution network + a 
deconvolution network.

• H(x) = Decovolution ∘ Covolution(x)



Deconvolution operation

• Also known as ConvolutionTranspose layer.
• A Deconvolution operation with stride = s, is defined as:
• On input 𝑥𝑥, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑑𝑑 × 𝑑𝑑 × 𝐶𝐶
• First, define a new vector x’ of size ≈ 𝑑𝑑𝑠𝑠

• 𝑥𝑥𝑥 𝑠𝑠𝑠𝑠, 𝑗𝑗𝑠𝑠 = 𝑥𝑥 𝑠𝑠, 𝑗𝑗 , other entries are zero.
• Padding: Pad zeros to x’.

• Then apply standard convolution on (padded) 𝑥𝑥𝑥, with stride 1.
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