
10417/10617
Intermediate Deep Learning:

Fall 2023
Yuanzhi Li / Russ Salakhutdinov
Machine Learning Department

Using neural
network in
practice Part I:
Vision.

So we have learned how
to train a neural network

• Now it’s time to use it in practice.
• Vision (recognizing images) was among the first

applications of deep learning.
• Given an image, we want to use neural networks to

predict its labels.

Deep learning in
Vision
• AlexNet (2011), a convolution neural network to recognize images

(trained on ImageNet dataset).

• ZFNet (2012), a convolution + deconvolution neural network to
recognize images.

• VGG (2014), a convolution neural network to recognize images.

• ResNet (2015), a convolution neural network with residual link to
recognize images.

• MobileNet (2017), a depthwise separate convolution neural
network to recognize images.

• Vision Transformers (ViTs) (2020), a transformer-based vision
model that leaves all convolution neural networks in dust…

Deep
learning
in vision

Although convolution neural
networks are replaced by ViTs
now…

We still want to learn this very
important discovery in history.

ViTs also simulates convolution
neural network in practice (see for
example the work of Samy Jelassi
and me).

Images

Deep learning for image
recognization

• Given a (square) RGB-based image x.

• It’s best to view x as a 3-tensor, of dimension
𝑑𝑑 × 𝑑𝑑 × 3.

• So, how do we apply a neural network on this
input x?

• One way is to flatten x to a vector in
dimension 3𝑑𝑑2, then apply our old friend
MLP to it, and output the label of the
image (like whether is a car, a cat, a dog
etc).

• Why is this a bad idea?

Spatial
structure of

images

MLP lacks spatial structure
• What would ℎ 𝑊𝑊, 𝑥𝑥𝑥 look like when comparing to ℎ 𝑊𝑊, 𝑥𝑥 ?
• Let’s consider ℎ(𝑊𝑊, 𝑥𝑥) = 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏) = 𝜎𝜎(∑𝑖𝑖,𝑗𝑗,𝑟𝑟 𝑤𝑤𝑖𝑖,𝑗𝑗,𝑟𝑟𝑥𝑥𝑖𝑖,𝑗𝑗,𝑟𝑟 + 𝑏𝑏)
• ℎ 𝑊𝑊, 𝑥𝑥′ = 𝜎𝜎(∑𝑖𝑖,𝑗𝑗,𝑟𝑟 𝑤𝑤𝑖𝑖,𝑗𝑗−1,𝑟𝑟𝑥𝑥𝑖𝑖,𝑗𝑗,𝑟𝑟 + 𝑏𝑏)
• It has nothing to do with x, unless 𝑤𝑤𝑖𝑖,𝑗𝑗,𝑟𝑟 is close to 𝑤𝑤𝑖𝑖,𝑗𝑗−1,𝑟𝑟 (which is not guaranteed in

MLP).
• We want to make it guaranteed by posting some constraints on the weights.

Convolution neural network

Can we design a neural network that respects the “spatial
structure” of the image?

Meaning that if we shift the image, the output of the network
stays relatively unchanged, regardless of the weights of the
network?

Averaging
Operation

• ℎ(𝑊𝑊, 𝑥𝑥) = 𝜎𝜎(∑𝑖𝑖,𝑗𝑗,𝑟𝑟 𝑤𝑤𝑖𝑖,𝑗𝑗,𝑟𝑟𝑥𝑥𝑖𝑖,𝑗𝑗,𝑟𝑟 + 𝑏𝑏)
• ℎ 𝑊𝑊, 𝑥𝑥′ = 𝜎𝜎(∑𝑖𝑖,𝑗𝑗,𝑟𝑟 𝑤𝑤𝑖𝑖,𝑗𝑗−1,𝑟𝑟𝑥𝑥𝑖𝑖,𝑗𝑗,𝑟𝑟 + 𝑏𝑏)
• A naïve solution to make the output of h

relatively unchanged: setting all the weights
𝑤𝑤𝑖𝑖,𝑗𝑗,𝑟𝑟 to be equal.

• This makes ℎ(𝑊𝑊, 𝑥𝑥) unchanged…But this is
just the (global) average of the coordinate of
x, which is weak in terms of representation
power.

Average Pooling

Idea: Instead of averaging
over all the coordinates of

x, what if we take an
average over a subset of

coordinates of x?

This is the average pooling
operation.

Average Pooling
• An average pooling layer takes input x of shape 𝑑𝑑 × 𝑑𝑑 × 𝐶𝐶 (width x height x number of

channels).

• It outputs y of shape 𝑑𝑑′ × 𝑑𝑑′ × 𝐶𝐶,𝑑𝑑′ ≈ 𝑑𝑑
𝑚𝑚

• 𝑦𝑦 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = ∑𝑟𝑟,𝑠𝑠∈ 𝑝𝑝 𝑥𝑥 [𝑚𝑚 × 𝑖𝑖 + 𝑟𝑟,𝑚𝑚 × 𝑗𝑗 + 𝑠𝑠, 𝑘𝑘] .

• p is called the “kernel size”, m is called the “stride”
• Each output coordinate of y is a “local average of x”.
• Average pooling operation is robust to shift: If we shift x by m (left, right, up, down) to x’,

then we also shift y by one (left, right, up, down) to y’.

Convolution Operation

• Using “Local weighted average” instead of unweighted average.

• A convolution layer takes input x of shape 𝑑𝑑 × 𝑑𝑑 × 𝐶𝐶 (width x
height x number of channels).

• The output of the convolution layer y is of shape 𝑑𝑑′ × 𝑑𝑑′ × 𝐶𝐶′
• The computation is given by:

• 𝑦𝑦 𝑖𝑖, 𝑗𝑗,𝑘𝑘 = ∑𝑟𝑟,𝑠𝑠∈ 𝑝𝑝 ,𝑙𝑙∈[𝐶𝐶]𝑤𝑤 𝑟𝑟, 𝑠𝑠,𝑘𝑘, 𝑙𝑙 𝑥𝑥[
]

𝑚𝑚 × 𝑖𝑖 + 𝑟𝑟,𝑚𝑚 × 𝑗𝑗 +
𝑠𝑠, 𝑙𝑙 + 𝑏𝑏[𝑘𝑘]

• So w is of dimension 𝑝𝑝 × 𝑝𝑝 × 𝐶𝐶′ × 𝐶𝐶.
• 𝑑𝑑′ ≈ 𝑑𝑑/𝑚𝑚

Convolution
operation

• 𝑦𝑦 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 =
∑𝑟𝑟,𝑠𝑠∈ 𝑝𝑝 ,𝑙𝑙∈[𝐶𝐶]𝑤𝑤 𝑟𝑟, 𝑠𝑠, 𝑘𝑘, 𝑙𝑙 𝑥𝑥[𝑚𝑚 × 𝑖𝑖 + 𝑟𝑟,𝑚𝑚 × 𝑗𝑗 + 𝑠𝑠, 𝑙𝑙]

• So w is in dimension 𝑝𝑝 × 𝑝𝑝 × 𝐶𝐶′ × 𝐶𝐶

• Here, p is called the “kernel size”, m is called the
“stride”, C’ is called Out_Channels.

• Here, each coordinate of y is some local weighted
average of x.

Convolution
operation

• 𝑦𝑦 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = ∑𝑟𝑟,𝑠𝑠∈ 𝑝𝑝 ,𝑙𝑙∈[𝐶𝐶]𝑤𝑤 𝑟𝑟, 𝑠𝑠, 𝑘𝑘, 𝑙𝑙 𝑥𝑥[
]

𝑚𝑚 × 𝑖𝑖 + 𝑟𝑟,𝑚𝑚 × 𝑗𝑗 +
𝑠𝑠, 𝑙𝑙 + 𝑏𝑏[𝑘𝑘]

• Convolution operation is robust to the shift: If we shift x by
m (left, right, up, down) to x’, then we also shift y by one
(left, right, up, down) to y’.

Convolution Filters
Visualization of the convolution
filter (the weight of the first layer
of a convolution network):

Convolution Network
• A convolution network is a network that uses convolution layers instead of all MLPs.

• An example of the convolution network is:

• ℎ 𝑊𝑊,𝑋𝑋 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∘ 𝐹𝐹𝑙𝑙𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝜎𝜎 ∘ 𝐶𝐶𝐶𝐶𝐹𝐹𝑣𝑣𝐿𝐿 ∘ 𝜎𝜎 ∘ 𝐶𝐶𝐶𝐶𝐹𝐹𝑣𝑣𝐿𝐿−1𝜎𝜎 ∘ ⋯ ∘ 𝜎𝜎 ∘ 𝐶𝐶𝐶𝐶𝐹𝐹𝑣𝑣1 𝑥𝑥
• Flatten means flatten a 𝑑𝑑 × 𝑑𝑑 × 𝐶𝐶 tensor to a 𝑑𝑑2𝐶𝐶 dimension vector.

Convolution networks in history

AlexNet

• -> Convolution (5x5 kernel, stride = 1, Out_Channels = 6)->Sigmoid
• -> Pool(2x2 kernel, stride = 2)
• -> Convolution (5x5 kernel, stride = 1, Out_Channels = 16) -> Sigmoid
• -> Pool(2x2 kernel, stride = 2) -> flatten
• -> 3 layer MLP -> Output.

Image

Convolution
networks in
history

• VGG Network:
• Image

• Conv(3x3 , stride = 1, out_channels = 64) ->
ReLU -> pool(2x2, stride = 2)

• Conv(3x3 , stride = 1, out_channels = 128) ->
ReLU -> pool(2x2, stride = 2)

• (Conv(3x3 , stride = 1, out_channels = 256) ->
ReLU)x2 -> pool(2x2, stride = 2)

• (Conv(3x3 , stride = 1, out_channels = 512) ->
ReLU)x2 -> pool(2x2, stride = 2)

• ->Flatten->2-layer MLP-> Output

Convolution networks in history

• VGG Network with BN:

• Image
• Conv(3x3 , stride = 1, out_channels = 64) ->BN-> ReLU -> pool(2x2, stride = 2)
• Conv(3x3 , stride = 1, out_channels = 128) ->BN-> ReLU -> pool(2x2, stride = 2)
• (Conv(3x3 , stride = 1, out_channels = 256) -> BN -> ReLU)x2 -> pool(2x2, stride = 2)
• (Conv(3x3 , stride = 1, out_channels = 512) -> BN -> ReLU)x2 -> pool(2x2, stride = 2)
• ->Flatten->2-layer MLP-> Output

Convolution networks in history

ResNet:

• x - > Conv(3x3, stride = 1 (or 2), out_channels = K) -> BN -> ReLU
• -> Conv(3x3, stride = 1, out_channels = K) -> BN -> add x

Residual_Block(channels = K):

• -> Pool(2x2, stride = 2)
• -> Residual_Block(channels = 64) x 3
• -> Residual_Block(channels = 128) x 4
• -> Residual_Block(channels = 256) x 5
• -> Residual_Block(channels = 512) x 3
• -> Pool(2x2, stride = 2) -> flatten->2-layer MLP -> Output

Image -> Conv(7x7, stride = 2, out_channels = 64) -> BN-> ReLU

	10417/10617�Intermediate Deep Learning:�Fall 2023
	Using neural network in practice Part I: Vision.
	So we have learned how to train a neural network
	Deep learning in Vision
	Deep learning in vision
	Images
	Deep learning for image recognization
	Spatial structure of images
	MLP lacks spatial structure
	Convolution neural network
	Averaging Operation
	Average Pooling
	Average Pooling
	Convolution Operation
	Convolution operation
	Convolution operation
	Convolution Filters
	Convolution Network
	Convolution networks in history
	Convolution networks in history
	Convolution networks in history
	Convolution networks in history

