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Using neural 
network in 
practice Part I: 
Vision.



So we have learned how 
to train a neural network

• Now it’s time to use it in practice.
• Vision (recognizing images) was among the first 

applications of deep learning.
• Given an image, we want to use neural networks to 

predict its labels.



Deep learning in 
Vision
• AlexNet (2011), a convolution neural network to recognize images 

(trained on ImageNet dataset).

• ZFNet (2012), a convolution + deconvolution neural network to 
recognize images.

• VGG (2014), a convolution neural network to recognize images.

• ResNet (2015), a convolution neural network with residual link to 
recognize images.

• MobileNet (2017), a depthwise separate convolution neural 
network to recognize images.

• Vision Transformers (ViTs) (2020), a transformer-based vision 
model that leaves all convolution neural networks in dust…



Deep 
learning 
in vision

Although convolution neural 
networks are replaced by ViTs 
now…

We still want to learn this very 
important discovery in history.

ViTs also simulates convolution 
neural network in practice (see for 
example the work of Samy Jelassi 
and me).



Images



Deep learning for image 
recognization

• Given a (square) RGB-based image x.

• It’s best to view x as a 3-tensor, of dimension 
𝑑𝑑 × 𝑑𝑑 × 3.

• So, how do we apply a neural network on this 
input x?

• One way is to flatten x to a vector in 
dimension 3𝑑𝑑2, then apply our old friend 
MLP to it, and output the label of the 
image (like whether is a car, a cat, a dog 
etc).

• Why is this a bad idea?



Spatial 
structure of 

images



MLP lacks spatial structure
• What would ℎ 𝑊𝑊, 𝑥𝑥𝑥  look like when comparing to ℎ 𝑊𝑊, 𝑥𝑥 ?
• Let’s consider ℎ(𝑊𝑊, 𝑥𝑥)  = 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏) = 𝜎𝜎(∑𝑖𝑖,𝑗𝑗,𝑟𝑟 𝑤𝑤𝑖𝑖,𝑗𝑗,𝑟𝑟𝑥𝑥𝑖𝑖,𝑗𝑗,𝑟𝑟 + 𝑏𝑏)
• ℎ 𝑊𝑊, 𝑥𝑥′ = 𝜎𝜎(∑𝑖𝑖,𝑗𝑗,𝑟𝑟 𝑤𝑤𝑖𝑖,𝑗𝑗−1,𝑟𝑟𝑥𝑥𝑖𝑖,𝑗𝑗,𝑟𝑟 + 𝑏𝑏)
• It has nothing to do with x, unless 𝑤𝑤𝑖𝑖,𝑗𝑗,𝑟𝑟 is close to 𝑤𝑤𝑖𝑖,𝑗𝑗−1,𝑟𝑟 (which is not guaranteed in 

MLP).
• We want to make it guaranteed by posting some constraints on the weights.



Convolution neural network

Can we design a neural network that respects the “spatial 
structure” of the image? 

Meaning that if we shift the image, the output of the network 
stays relatively unchanged, regardless of the weights of the 
network?



Averaging 
Operation

• ℎ(𝑊𝑊, 𝑥𝑥)  = 𝜎𝜎(∑𝑖𝑖,𝑗𝑗,𝑟𝑟 𝑤𝑤𝑖𝑖,𝑗𝑗,𝑟𝑟𝑥𝑥𝑖𝑖,𝑗𝑗,𝑟𝑟 + 𝑏𝑏)
• ℎ 𝑊𝑊, 𝑥𝑥′ = 𝜎𝜎(∑𝑖𝑖,𝑗𝑗,𝑟𝑟 𝑤𝑤𝑖𝑖,𝑗𝑗−1,𝑟𝑟𝑥𝑥𝑖𝑖,𝑗𝑗,𝑟𝑟 + 𝑏𝑏)
• A naïve solution to make the output of h 

relatively unchanged: setting all the weights 
𝑤𝑤𝑖𝑖,𝑗𝑗,𝑟𝑟 to be equal.

• This makes ℎ(𝑊𝑊, 𝑥𝑥) unchanged…But this is 
just the (global) average of the coordinate of 
x, which is weak in terms of representation 
power.



Average Pooling

Idea: Instead of averaging 
over all the coordinates of 

x, what if we take an 
average over a subset of 

coordinates of x?

This is the average pooling 
operation. 



Average Pooling
• An average pooling layer takes input x of shape 𝑑𝑑 × 𝑑𝑑 × 𝐶𝐶 (width x height x number of 

channels).

• It outputs y of shape 𝑑𝑑′ × 𝑑𝑑′ × 𝐶𝐶,𝑑𝑑′ ≈ 𝑑𝑑
𝑚𝑚

• 𝑦𝑦 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = ∑𝑟𝑟,𝑠𝑠∈ 𝑝𝑝 𝑥𝑥 [𝑚𝑚 × 𝑖𝑖 + 𝑟𝑟,𝑚𝑚 × 𝑗𝑗 + 𝑠𝑠, 𝑘𝑘] .

• p is called the “kernel size”, m is called the “stride”
• Each output coordinate of y is a “local average of x”.
• Average pooling operation is robust to shift: If we shift x by m (left, right, up, down) to x’, 

then we also shift y by one (left, right, up, down) to y’.



Convolution Operation

• Using “Local weighted average” instead of unweighted average. 

• A convolution layer takes input x of shape 𝑑𝑑 × 𝑑𝑑 × 𝐶𝐶 (width x 
height x number of channels).

• The output of the convolution layer y is of shape 𝑑𝑑′ × 𝑑𝑑′ × 𝐶𝐶′ 
• The computation is given by:

• 𝑦𝑦 𝑖𝑖, 𝑗𝑗,𝑘𝑘 = ∑𝑟𝑟,𝑠𝑠∈ 𝑝𝑝 ,𝑙𝑙∈[𝐶𝐶]𝑤𝑤 𝑟𝑟, 𝑠𝑠,𝑘𝑘, 𝑙𝑙 𝑥𝑥[
]

𝑚𝑚 × 𝑖𝑖 + 𝑟𝑟,𝑚𝑚 × 𝑗𝑗 +
𝑠𝑠, 𝑙𝑙 + 𝑏𝑏[𝑘𝑘]

• So w is of dimension 𝑝𝑝 × 𝑝𝑝 × 𝐶𝐶′ × 𝐶𝐶.
• 𝑑𝑑′ ≈ 𝑑𝑑/𝑚𝑚 



Convolution 
operation

• 𝑦𝑦 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 =
∑𝑟𝑟,𝑠𝑠∈ 𝑝𝑝 ,𝑙𝑙∈[𝐶𝐶]𝑤𝑤 𝑟𝑟, 𝑠𝑠, 𝑘𝑘, 𝑙𝑙 𝑥𝑥[𝑚𝑚 × 𝑖𝑖 + 𝑟𝑟,𝑚𝑚 × 𝑗𝑗 + 𝑠𝑠, 𝑙𝑙]

• So w is in dimension 𝑝𝑝 × 𝑝𝑝 × 𝐶𝐶′ × 𝐶𝐶 

• Here, p is called the “kernel size”, m is called the 
“stride”, C’ is called Out_Channels.

• Here, each coordinate of y is some local weighted 
average of x. 



Convolution 
operation

• 𝑦𝑦 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = ∑𝑟𝑟,𝑠𝑠∈ 𝑝𝑝 ,𝑙𝑙∈[𝐶𝐶]𝑤𝑤 𝑟𝑟, 𝑠𝑠, 𝑘𝑘, 𝑙𝑙 𝑥𝑥[
]

𝑚𝑚 × 𝑖𝑖 + 𝑟𝑟,𝑚𝑚 × 𝑗𝑗 +
𝑠𝑠, 𝑙𝑙 + 𝑏𝑏[𝑘𝑘]

• Convolution operation is robust to the shift: If we shift x by 
m (left, right, up, down) to x’, then we also shift y by one 
(left, right, up, down) to y’.



Convolution Filters
Visualization of the convolution 
filter (the weight of the first layer 
of a convolution network):



Convolution Network
• A convolution network is a network that uses convolution layers instead of all MLPs.

• An example of the convolution network is:

• ℎ 𝑊𝑊,𝑋𝑋 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∘ 𝐹𝐹𝑙𝑙𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝜎𝜎 ∘ 𝐶𝐶𝐶𝐶𝐹𝐹𝑣𝑣𝐿𝐿 ∘ 𝜎𝜎 ∘ 𝐶𝐶𝐶𝐶𝐹𝐹𝑣𝑣𝐿𝐿−1𝜎𝜎 ∘ ⋯ ∘ 𝜎𝜎 ∘ 𝐶𝐶𝐶𝐶𝐹𝐹𝑣𝑣1 𝑥𝑥
• Flatten means flatten a 𝑑𝑑 × 𝑑𝑑 × 𝐶𝐶 tensor to a 𝑑𝑑2𝐶𝐶 dimension vector.



Convolution networks in history

AlexNet

• -> Convolution (5x5 kernel, stride = 1, Out_Channels = 6)->Sigmoid
• -> Pool(2x2 kernel, stride = 2) 
• -> Convolution (5x5 kernel, stride = 1, Out_Channels = 16) -> Sigmoid 
• -> Pool(2x2 kernel, stride = 2) -> flatten
• -> 3 layer MLP -> Output.

Image 



Convolution 
networks in 
history

• VGG Network:
• Image

• Conv(3x3 , stride = 1, out_channels = 64) -> 
ReLU -> pool(2x2, stride = 2)

• Conv(3x3 , stride = 1, out_channels = 128) -> 
ReLU -> pool(2x2, stride = 2)

• (Conv(3x3 , stride = 1, out_channels = 256) -> 
ReLU )x2 -> pool(2x2, stride = 2)

• (Conv(3x3 , stride = 1, out_channels = 512) -> 
ReLU )x2 -> pool(2x2, stride = 2)

• ->Flatten->2-layer MLP-> Output



Convolution networks in history

• VGG Network with BN:

• Image
• Conv(3x3 , stride = 1, out_channels = 64) ->BN-> ReLU -> pool(2x2, stride = 2)
• Conv(3x3 , stride = 1, out_channels = 128) ->BN-> ReLU -> pool(2x2, stride = 2)
• (Conv(3x3 , stride = 1, out_channels = 256) -> BN -> ReLU )x2 -> pool(2x2, stride = 2)
• (Conv(3x3 , stride = 1, out_channels = 512) -> BN -> ReLU )x2 -> pool(2x2, stride = 2)
• ->Flatten->2-layer MLP-> Output



Convolution networks in history

ResNet:

• x - > Conv(3x3, stride = 1 (or 2), out_channels = K) -> BN -> ReLU
• -> Conv(3x3, stride = 1, out_channels = K)  -> BN ->  add x

Residual_Block(channels = K):

• -> Pool(2x2, stride = 2)
• -> Residual_Block(channels = 64) x 3
• -> Residual_Block(channels = 128) x 4
• -> Residual_Block(channels = 256) x 5
• -> Residual_Block(channels = 512) x 3
• -> Pool(2x2, stride = 2) -> flatten->2-layer MLP -> Output

Image -> Conv(7x7, stride = 2, out_channels = 64) -> BN-> ReLU 
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