
10417/10617
Intermediate Deep Learning:

Fall 2023
Yuanzhi Li / Russ Salakhutdinov
Machine Learning Department

Training neural networks
• Give a machine learning model h(W, x), where W is the parameter, x is the input.
• For MLPs: ℎ 𝑊𝑊, 𝑥𝑥 = 𝑊𝑊𝐿𝐿+1 𝜎𝜎 𝑊𝑊𝐿𝐿𝜎𝜎 𝑊𝑊𝐿𝐿 −1𝜎𝜎 ∘ ⋯∘ 𝜎𝜎(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1 … + 𝑏𝑏𝐿𝐿 −1 + 𝑏𝑏𝐿𝐿) +
𝑏𝑏𝐿𝐿+1

• For 𝑊𝑊 = (𝑊𝑊𝐿𝐿+1,𝑊𝑊𝐿𝐿, … ,𝑊𝑊1, 𝑏𝑏𝐿𝐿+1, 𝑏𝑏𝐿𝐿, … , 𝑏𝑏1).

• We train to min
𝑊𝑊

1
𝑁𝑁
∑𝑖𝑖∈[𝑁𝑁] 𝑙𝑙 ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 + 𝑅𝑅(𝑊𝑊)

• We have learned how to compute the gradient of the objective.

Training
neural
networks

• We train to find the minimizer:
min
𝑊𝑊

1
𝑁𝑁
∑𝑖𝑖∈[𝑁𝑁] 𝑙𝑙 ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 + 𝑅𝑅(𝑊𝑊)

• We have learned how to compute the
gradient of the objective.

• Can we train neural networks now?
• Answer: Yes, but it is going to be hard for the

training to work on deep neural networks…

Training
neural

networks

• Biggest problems training (multi-layer)
neural networks.

• ℎ 𝑊𝑊, 𝑥𝑥 = 𝑊𝑊𝐿𝐿+1 𝜎𝜎(
)

𝑊𝑊𝐿𝐿𝜎𝜎(
)

𝑊𝑊𝐿𝐿 −1𝜎𝜎 ∘ ⋯ ∘
𝜎𝜎(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1 … + 𝑏𝑏𝐿𝐿 −1 + 𝑏𝑏𝐿𝐿) + 𝑏𝑏𝐿𝐿+1

• Key observation:
• If ||𝑊𝑊𝑙𝑙||2 > 2 for every 𝑙𝑙, then

potentially ℎ 𝑊𝑊, 𝑥𝑥 > 2𝐿𝐿

• If ||𝑊𝑊𝑙𝑙||2 < 1
2

for every 𝑙𝑙, then
potentially ℎ 𝑊𝑊, 𝑥𝑥 < 2−𝐿𝐿

• The output of the neural network will
blow up/shrink to zero unless ||𝑊𝑊𝑙𝑙||2 is in
a narrow “nice range”.

Output
explosion/vanishing

One of the key difficulties of training
a neural network is:
• The output of the neural network (or

intermediate neurons) at a higher layer can
easily explode (too large) or vanish (too
small).

• The explosion/vanishing happens
exponentially (in terms of layers).

This makes training deep neural
networks quite difficult.
• We are going to learn several techniques to

mitigate it, including normalization and
residual links.

Output explosion/vanishing

• At some layer 𝑙𝑙, how do we maintain that ℎ𝑙𝑙(𝑥𝑥) stays in a “healthy
range”? Meaning that each coordinate of ℎ𝑙𝑙(𝑥𝑥) is typically neither
too large nor too small.

• The naïve solution: If 𝜎𝜎 is a sign function, then each coordinate of
ℎ𝑙𝑙(𝑥𝑥) is in {-1, 1} (good).

• But when 𝜎𝜎 is a sign function, the gradient of the neural
network is zero…

• Recall 𝑔𝑔𝑙𝑙 = 𝑊𝑊𝑙𝑙+1
T 𝑔𝑔𝑙𝑙+1 ⊗𝜎𝜎′ 𝑧𝑧𝑙𝑙

Output explosion/vanishing

• We want each coordinate of ℎ𝑙𝑙(𝑥𝑥) to be in a good range, like in {-1, 1}
• But we can’t use the sign activation function.
• Solution?

• Normalization techniques.

Normalization
techniques in
deep learning

Layer normalization and
Bach normalization.

Normalization techniques
are what make deep
learning training possible.

Layer
normalization

• Key idea:
• We want each coordinate of ℎ𝑙𝑙(𝑥𝑥) to be in a

good range, like {-1, 1}
• But this is not doable in a differentiable manner.

• We relax it to be: The norm of ℎ𝑙𝑙(𝑥𝑥) is 1.

Layer
normalization

• Given a vector z, the layer-normalization
layer is defined as:

• 𝐿𝐿𝐿𝐿 𝑎𝑎, 𝑏𝑏, 𝑧𝑧 = 𝑎𝑎 ⊗ 𝑧𝑧
𝑧𝑧 2+𝜀𝜀

+ 𝑏𝑏

• Where a, b are two vectors, they are trainable
parameters, z is the input. a is typically initialized
at 1, b is initialized at 0. 𝜀𝜀 is fixed and typically
very small, like 10−8 𝑜𝑜𝑜𝑜 10−6.

• We also use LN(z) to denote LN(a, b, z) for
simplicity (to hide the trainable parameters –
They are still there, but we just don’t write
them in the expression for notation
simplicity).

Layer
normalization

• 𝐿𝐿𝐿𝐿 𝑎𝑎, 𝑏𝑏, 𝑧𝑧 = 𝑎𝑎 ⊗ 𝑧𝑧
𝑧𝑧 2+𝜀𝜀

+ 𝑏𝑏

• In this way, as long as a is not too
large/small and b is not too large,
the norm of the output of LN(a, b,
z) is in a good range for every z.

• 𝐿𝐿𝐿𝐿(𝑧𝑧) is a differentiable function
of z for every z.

Layer normalization
• As an example, we can use layer normalization in an MLP as:
• ℎ 𝑊𝑊, 𝑥𝑥 = 𝑊𝑊𝐿𝐿+1 𝐿𝐿𝐿𝐿 ∘ 𝜎𝜎 𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿 ∘ 𝜎𝜎 𝑊𝑊𝐿𝐿 −1𝐿𝐿𝐿𝐿 ∘ 𝜎𝜎 ∘ ⋯ ∘ 𝐿𝐿𝐿𝐿 ∘ 𝜎𝜎(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1 … + 𝑏𝑏𝐿𝐿 −1 +
𝑏𝑏𝐿𝐿) + 𝑏𝑏𝐿𝐿+1

• In this way, the output norm of each hidden layer is in a good range (not exploding nor
vanishing).

Batch normalization

• Layer normalization is great.
• But still, the norm of the output is good could still lead to some bad configurations.

• Only one neuron always outputs 1, all the other neurons output 0.

• What if I really want each coordinate of ℎ𝑙𝑙(𝑥𝑥) to be in a good range, like {-1, 1}, instead of
the norm of the entire layer?

• In this way, we enforce every neuron to be useful.

Batch normalization

• Batch normalization ensures that “every neuron is
useful”.

• Given a batch of n inputs 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 in R,
• Batch normalization operation BN is defined as:

• 𝐵𝐵𝐿𝐿 𝑧𝑧𝑖𝑖 = 𝑎𝑎 × 𝑧𝑧𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛({𝑧𝑧1,…,𝑧𝑧𝑛𝑛})
𝑠𝑠𝑠𝑠𝑠𝑠({𝑧𝑧1,…,𝑧𝑧𝑛𝑛})+𝜀𝜀

+ 𝑏𝑏

• Where a, b are trainable real values, 𝜀𝜀 is fixed.

Batch
normalization

• 𝐵𝐵𝐿𝐿 𝑧𝑧𝑖𝑖 = 𝑎𝑎 × 𝑧𝑧𝑖𝑖 −𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛({𝑧𝑧1,…,𝑧𝑧𝑛𝑛})
𝑠𝑠𝑠𝑠𝑠𝑠({𝑧𝑧1,…,𝑧𝑧𝑛𝑛})+𝜀𝜀

+ 𝑏𝑏

• BN is a differentiable function of each 𝑧𝑧𝑖𝑖.
• If a = 1 and b = 0, it ensures that the variance

of {𝐵𝐵𝐿𝐿 𝑧𝑧1 , …, 𝐵𝐵𝐿𝐿 𝑧𝑧𝑛𝑛 } is 1 and mean is 0.
• Almost like the output of 𝐵𝐵𝐿𝐿 𝑧𝑧𝑖𝑖 is in {-1, 1}.

Batch normalization

• To use Batch normalization in a neural network:
• For example, if we apply batch-normalization to a neuron n(x)

• Given a batch of input 𝑥𝑥(1), 𝑥𝑥(2), … , 𝑥𝑥 𝑛𝑛 :

• 𝐵𝐵𝐿𝐿 𝑛𝑛 𝑥𝑥 𝑖𝑖 = 𝑎𝑎
𝑛𝑛 𝑥𝑥 𝑖𝑖 −𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 𝑛𝑛 𝑥𝑥 𝑗𝑗

𝑗𝑗∈[𝑛𝑛]

𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛 𝑥𝑥 𝑗𝑗
𝑗𝑗∈[𝑛𝑛] +𝜀𝜀

+ 𝑏𝑏

• So, we can also use:
• ℎ 𝑊𝑊, 𝑥𝑥 = 𝑊𝑊𝐿𝐿+1 𝐵𝐵𝐿𝐿 ∘ 𝜎𝜎(

)
𝑊𝑊𝐿𝐿𝐵𝐵𝐿𝐿 ∘ 𝜎𝜎 𝑊𝑊𝐿𝐿 −1𝐵𝐵𝐿𝐿 ∘ 𝜎𝜎 ∘ ⋯∘ 𝐵𝐵𝐿𝐿 ∘ 𝜎𝜎(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1 … +

𝑏𝑏𝐿𝐿 −1 + 𝑏𝑏𝐿𝐿) + 𝑏𝑏𝐿𝐿+1

Batch normalization versus layer normalization

Batch normalization ensures the output of each neuron has a good
variance. While layer normalization only ensures the output of the
layer has a good norm. (Batch normalization wins).

Batch normalization requires batch input, which means you can only
use batch normalization with a relatively large training batch. So it’s
more memory intensive (Batch normalization loses).

Batch normalization is typically used in CNN (Convolution neural
networks), layer normalization is typically used in transformers.

Residual
Link

Now we make
sure the output of

each
neuron/layer in

the neural
network is good…

Can we train
neural networks

now?

Residual Link

Can we train
neural networks

now?

We can, but it
still won’t be

good…

Recall what we
want a neural
network to do.

We want a neural
network to perform
hierarchical feature

learning.

Residual Link

Hierarchical Feature
Learning:

• We want the first layer of neural network to learn basic number arithmetics.
• The second layer to learn variable arithmetics.
• The third layer to learn matrix arithmetics.
• The fourth layer to learn tensor arithmetics…

For example, to learn
advanced calculus.

• The fourth layer relies on the features of the first layer.
Key observation: Even

tensor arithmetics rely on
basic number arithmetics!

Residual Link

• In hierarchical feature learning,
• The higher layer often directly relies on the features of the very low layers.

• ℎ 𝑊𝑊, 𝑥𝑥 = 𝑊𝑊𝐿𝐿+1 𝜎𝜎 𝑊𝑊𝐿𝐿𝜎𝜎 𝑊𝑊𝐿𝐿 −1𝜎𝜎 ∘ ⋯ ∘ 𝜎𝜎(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1 … + 𝑏𝑏𝐿𝐿 −1 + 𝑏𝑏𝐿𝐿) + 𝑏𝑏𝐿𝐿+1
• Directly accessing the features in very low layers from very high layers is not that easy…

• There’s so much non-linearity in between.

Residual Link

When neural network is performing
Hierarchical Feature Learning:

Can ensure the higher layers can directly access the
features of the (much) lower layers?

Solution: Residual link.

Residual Link

• Residual link: Replace the basic block of MLP from 𝜎𝜎(𝑊𝑊𝑧𝑧 + 𝑏𝑏)

• To 𝑧𝑧 + 𝑉𝑉𝜎𝜎(𝑊𝑊𝑧𝑧 + 𝑏𝑏)
• Original MLP:

• ℎ𝑙𝑙 𝑥𝑥 = 𝜎𝜎(𝑊𝑊𝑙𝑙ℎ𝑙𝑙 −1 𝑥𝑥 + 𝑏𝑏𝑙𝑙)
• MLPs with Residual link:

• ℎ𝑙𝑙 𝑥𝑥 = ℎ𝑙𝑙−1 𝑥𝑥 + 𝑉𝑉𝑙𝑙−1𝜎𝜎(𝑊𝑊𝑙𝑙−1ℎ𝑙𝑙−1 𝑥𝑥 + 𝑏𝑏𝑙𝑙−1)

One last trick

Now, can we train neural
networks???????????????????????????

Yes, we finally can, but there’s one
additional trick that helps training.

Dropout

• Let us consider an one-hidden-layer
MLP ℎ 𝑥𝑥 = ∑𝑖𝑖 𝑎𝑎𝑖𝑖𝜎𝜎(𝑤𝑤𝑖𝑖𝑇𝑇𝑥𝑥 + 𝑏𝑏𝑖𝑖)

• Key problem during training: Mode
collapsing.

• At anytime during training, whenever
𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗 ,𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑗𝑗 , 𝑏𝑏𝑖𝑖 = 𝑏𝑏𝑗𝑗 .

• Then 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗 ,𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑗𝑗 , 𝑏𝑏𝑖𝑖 = 𝑏𝑏𝑗𝑗
forever afterwards during training.

• If we use gradient based method.

• This is because these two neurons will
have the same gradient at any
iteration afterwards.

Dropout

• At anytime during training, whenever 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗 ,𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑗𝑗 , 𝑏𝑏𝑖𝑖 =
𝑏𝑏𝑗𝑗 .

• Then 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗 ,𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑗𝑗 , 𝑏𝑏𝑖𝑖 = 𝑏𝑏𝑗𝑗 forever afterwards during
training.

• This is because these two neurons will have the same
gradient at any iteration afterwards.

• Can we save it?
• Dropout.

Dropout

• For a vector 𝑧𝑧 ∈ 𝑅𝑅𝑠𝑠, the dropout layer is defined
as:

• Dropout(z) = 𝑧𝑧 ⊗ 𝜏𝜏,𝑤𝑤ℎ𝑤𝑤𝑜𝑜𝑤𝑤 𝜏𝜏 ∈ 0, 1 𝑠𝑠 is a random
variable, each coordinate is i.i.d.

• Pr 𝜏𝜏𝑖𝑖 = 0 = 𝑝𝑝
• 𝜏𝜏 is not trainable, but sampled randomly at

every training batch.
• We can apply dropout like:

• MLP ℎ 𝑥𝑥 = ∑𝑖𝑖 𝑎𝑎𝑖𝑖𝐷𝐷𝑜𝑜𝑜𝑜𝑝𝑝𝑜𝑜𝐷𝐷𝐷𝐷(𝜎𝜎 𝑤𝑤𝑖𝑖𝑇𝑇𝑥𝑥 + 𝑏𝑏𝑖𝑖)
• ℎ 𝑥𝑥 is a randomized function.

Dropout

• We can apply dropout like:
• MLP ℎ 𝑥𝑥 =
∑𝑖𝑖 𝑎𝑎𝑖𝑖𝐷𝐷𝑜𝑜𝑜𝑜𝑝𝑝𝑜𝑜𝐷𝐷𝐷𝐷(𝜎𝜎 𝑤𝑤𝑖𝑖𝑇𝑇𝑥𝑥 + 𝑏𝑏𝑖𝑖)

• ℎ 𝑥𝑥 is a randomized function.

• Even if 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗 ,𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑗𝑗 , 𝑏𝑏𝑖𝑖 = 𝑏𝑏𝑗𝑗 .
• Their gradient might still be different,

since 𝜏𝜏𝑖𝑖 can be different from 𝜏𝜏𝑗𝑗

Dropout Training

• To train using dropout on, for example, ℎ 𝑥𝑥 =
∑𝑖𝑖 𝑎𝑎𝑖𝑖𝐷𝐷𝑜𝑜𝑜𝑜𝑝𝑝𝑜𝑜𝐷𝐷𝐷𝐷(𝜎𝜎 𝑤𝑤𝑖𝑖𝑇𝑇𝑥𝑥 + 𝑏𝑏𝑖𝑖)

• At every iteration, for each 𝑥𝑥(𝑗𝑗), we randomly sample a 𝜏𝜏(𝑗𝑗), and
obtain function ℎ(𝑗𝑗) 𝑥𝑥(𝑗𝑗) = ∑𝑖𝑖 𝑎𝑎𝑖𝑖𝜏𝜏𝑖𝑖

𝑗𝑗 𝜎𝜎 𝑤𝑤𝑖𝑖𝑇𝑇𝑥𝑥(𝑗𝑗) + 𝑏𝑏𝑖𝑖
• Compute the gradient of W for 𝐿𝐿(ℎ(𝑗𝑗) 𝑥𝑥(𝑗𝑗) ,𝑦𝑦(𝑗𝑗))
• Update using this gradient.

	10417/10617�Intermediate Deep Learning:�Fall 2023
	Training neural networks
	Training neural networks
	Training neural networks
	Output explosion/vanishing
	Output explosion/vanishing
	Output explosion/vanishing
	Normalization techniques in deep learning
	Layer normalization
	Layer normalization
	Layer normalization
	Layer normalization
	Batch normalization
	Batch normalization
	Batch normalization
	Batch normalization
	Batch normalization versus layer normalization
	Residual Link
	Residual Link
	Residual Link
	Residual Link
	Residual Link
	Residual Link
	One last trick
	Dropout
	Dropout
	Dropout
	Dropout
	Dropout Training

