
10417/10617
Intermediate Deep Learning:

Fall 2023
Yuanzhi Li / Russ Salakhutdinov
Machine Learning Department

Training of neural networks:
Backpropagation

• Give a machine learning model h(W, x), where W is
the parameter, x is the input.

• For example: h(W, x) = <W, x> for a linear model.
• For MLPs: ℎ 𝑊𝑊, 𝑥𝑥 = 𝑊𝑊𝐿𝐿+1 𝜎𝜎(

)
𝑊𝑊𝐿𝐿𝜎𝜎(

)
𝑊𝑊𝐿𝐿−1𝜎𝜎 ∘ ⋯∘

𝜎𝜎(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1 … + 𝑏𝑏𝐿𝐿 −1 + 𝑏𝑏𝐿𝐿) + 𝑏𝑏𝐿𝐿+1
• For 𝑊𝑊 = (𝑊𝑊𝐿𝐿+1,𝑊𝑊𝐿𝐿, … ,𝑊𝑊1, 𝑏𝑏𝐿𝐿+1, 𝑏𝑏𝐿𝐿, … , 𝑏𝑏1).

Training of
neural
networks

• Give a machine learning model h(W, x),
where W is the parameter, x is the input.

• Given training data 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖
𝑖𝑖∈[𝑁𝑁], we

typically train the models using the Empirical
Risk Minimization (ERM) objective.

• min
𝑊𝑊

1
𝑁𝑁
∑𝑖𝑖∈[𝑁𝑁] 𝑙𝑙 ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 + 𝑅𝑅(𝑊𝑊)

• Here R(W) is the regularizer, typically the
norm of W.

• 𝑙𝑙 is a loss function, typically chosen as MSE
loss, Cross Entropy Loss, etc.

Training of
neural
networks

• min
𝑊𝑊

1
𝑁𝑁
∑𝑖𝑖∈[𝑁𝑁] 𝑙𝑙 ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 + 𝑅𝑅(𝑊𝑊)

• We want to find the parameter W of the
model h, so given the input 𝑥𝑥 𝑖𝑖 , the
prediction of the model (ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖) is as
close to the actual label 𝑦𝑦 𝑖𝑖 as possible.

• To find the minimizer, we typically use the
gradient descent based approach:

• Compute the gradient of L W =
1
𝑁𝑁
∑𝑖𝑖∈[𝑁𝑁] 𝑙𝑙 ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 + 𝑅𝑅(𝑊𝑊)

• Then update W according to the gradient.

Gradient
computation

• Compute the gradient of L W =
1
𝑁𝑁
∑𝑖𝑖∈[𝑁𝑁] 𝑙𝑙 ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 , 𝑦𝑦 𝑖𝑖 + 𝑅𝑅(𝑊𝑊)

• Main question: How do we
compute the gradient of L w.r.t. W
efficiently?

• This is the main topic we want to
learn in the lecture today.

Gradient computation

• When h(W, x) is a linear function (h(W, x) = <W, x>), we can compute
• ∇𝑙𝑙 ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 = 𝑙𝑙′ ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 × ∇ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖

• ∇𝑙𝑙 ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 = 𝑙𝑙′ ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 𝑥𝑥(𝑖𝑖)

• But what if h(W, x) is a neural network?

Backpropagation

We will learn how to compute the gradient of L, when h(W, x) is a
neural network.

We will learn the most important, and fundamental algorithm for
deep learning: Backpropagation.

Backpropagation is very typically used as interview questions in tech
companies, for deep learning coding.

Backpropagation
• ∇𝑙𝑙 ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 = 𝑙𝑙′ ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 × ∇ℎ 𝑊𝑊, 𝑥𝑥 𝑖𝑖

• ℎ 𝑊𝑊, 𝑥𝑥 = 𝑊𝑊𝐿𝐿+1 𝜎𝜎 𝑊𝑊𝐿𝐿𝜎𝜎 𝑊𝑊𝐿𝐿 −1𝜎𝜎 ∘ ⋯ ∘ 𝜎𝜎(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1 … + 𝑏𝑏𝐿𝐿 −1 + 𝑏𝑏𝐿𝐿) + 𝑏𝑏𝐿𝐿+1
• How do I compute the gradient of h w.r.t some 𝑊𝑊𝑙𝑙?

Backpropagation

• ℎ 𝑊𝑊, 𝑥𝑥 = 𝑊𝑊𝐿𝐿+1 𝜎𝜎 𝑊𝑊𝐿𝐿𝜎𝜎 𝑊𝑊𝐿𝐿 −1𝜎𝜎 ∘ ⋯ ∘ 𝜎𝜎(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1 … + 𝑏𝑏𝐿𝐿 −1 + 𝑏𝑏𝐿𝐿) + 𝑏𝑏𝐿𝐿+1
• Key observation: We can write (for some function 𝐹𝐹𝑙𝑙)
• ℎ 𝑊𝑊, 𝑥𝑥 = 𝐹𝐹𝑙𝑙(𝑊𝑊𝑙𝑙 ℎ𝑙𝑙 𝑥𝑥 + 𝑏𝑏𝑙𝑙)

• Let’s w.l.o.g consider the output of h is in R (otherwise, we can look at each
dimension separately)

• Then by chain rule, ∇𝑊𝑊𝑙𝑙ℎ 𝑊𝑊, 𝑥𝑥 = ∇𝐹𝐹𝑙𝑙 𝑊𝑊𝑙𝑙 ℎ𝑙𝑙 𝑥𝑥 + 𝑏𝑏𝑙𝑙 ℎ𝑙𝑙 𝑥𝑥 𝑇𝑇

Backpropagation
• ∇𝑊𝑊𝑙𝑙ℎ 𝑊𝑊, 𝑥𝑥 = ∇𝐹𝐹𝑙𝑙 𝑊𝑊𝑙𝑙 ℎ𝑙𝑙 𝑥𝑥 + 𝑏𝑏𝑙𝑙 ℎ𝑙𝑙 𝑥𝑥 𝑇𝑇

• So we need two things:
• ℎ𝑙𝑙 𝑥𝑥 : This is easy to compute using the forward pass.
• ∇𝐹𝐹𝑙𝑙 𝑊𝑊𝑙𝑙 ℎ𝑙𝑙 𝑥𝑥 + 𝑏𝑏𝑙𝑙 : How do we compute this?

• How do we compute ∇𝐹𝐹𝑙𝑙 𝑧𝑧𝑙𝑙 ? For 𝑧𝑧𝑙𝑙: = 𝑊𝑊𝑙𝑙 ℎ𝑙𝑙 𝑥𝑥 + 𝑏𝑏𝑙𝑙

Backpropagation

• How do we compute ∇𝐹𝐹 𝑧𝑧𝑙𝑙 ?
• Observation: if we define

• 𝐹𝐹𝑙𝑙(𝑧𝑧𝑙𝑙) = 𝑊𝑊𝐿𝐿+1 𝜎𝜎 𝑊𝑊𝐿𝐿𝜎𝜎 𝑊𝑊𝐿𝐿 −1𝜎𝜎 ∘ ⋯∘ 𝜎𝜎(𝑊𝑊𝑙𝑙+1 𝜎𝜎(𝑧𝑧𝑙𝑙) + 𝑏𝑏𝑙𝑙+1 … + 𝑏𝑏𝐿𝐿 −1 +
𝑏𝑏𝐿𝐿) + 𝑏𝑏𝐿𝐿+1

• Then 𝐹𝐹𝑙𝑙(𝑧𝑧𝑙𝑙) = 𝐹𝐹𝑙𝑙+1 𝑊𝑊𝑙𝑙+1𝜎𝜎 𝑧𝑧𝑙𝑙 + 𝑏𝑏𝑙𝑙+1

Backpropagation

• 𝐹𝐹𝑙𝑙(𝑧𝑧𝑙𝑙) = 𝐹𝐹𝑙𝑙+1 𝑊𝑊𝑙𝑙+1𝜎𝜎 𝑧𝑧𝑙𝑙 + 𝑏𝑏𝑙𝑙+1
• Again, by chain rule, we have that:

• ∇𝐹𝐹𝑙𝑙(𝑧𝑧𝑙𝑙) = 𝑊𝑊𝑙𝑙+1
T ∇𝐹𝐹𝑙𝑙+1 𝑊𝑊𝑙𝑙+1𝜎𝜎 𝑧𝑧𝑙𝑙 + 𝑏𝑏𝑙𝑙+1 ⊗ 𝜎𝜎′ 𝑧𝑧𝑙𝑙

• Here ⊗ means element-wise multiplication.

• ∇𝐹𝐹𝑙𝑙(𝑧𝑧𝑙𝑙) = 𝑊𝑊𝑙𝑙+1
T ∇𝐹𝐹𝑙𝑙+1 𝑧𝑧𝑙𝑙+1 ⊗ 𝜎𝜎′ 𝑧𝑧𝑙𝑙

Backpropagation

• ∇𝐹𝐹𝑙𝑙(𝑧𝑧𝑙𝑙) = 𝑊𝑊𝑙𝑙+1
T ∇𝐹𝐹𝑙𝑙+1 𝑧𝑧𝑙𝑙+1 ⊗ 𝜎𝜎′ 𝑧𝑧𝑙𝑙

• If we denote ∇𝐹𝐹𝑙𝑙 𝑧𝑧𝑙𝑙 = 𝑔𝑔𝑙𝑙
• Then we have: 𝑔𝑔𝑙𝑙 = 𝑊𝑊𝑙𝑙+1

T 𝑔𝑔𝑙𝑙+1 ⊗ 𝜎𝜎′ 𝑧𝑧𝑙𝑙
• Where 𝑔𝑔𝐿𝐿+1 = 1
• This is a backward induction formula, so the algorithm is called

backpropagation.

Backpropagation

• In summary, to compute ∇𝑊𝑊𝑙𝑙ℎ 𝑊𝑊, 𝑥𝑥

• We know that ∇𝑊𝑊𝑙𝑙ℎ 𝑊𝑊, 𝑥𝑥 = 𝑔𝑔𝑙𝑙ℎ𝑙𝑙 𝑥𝑥 𝑇𝑇

• Where 𝑔𝑔𝑙𝑙 = 𝑊𝑊𝑙𝑙+1
T 𝑔𝑔𝑙𝑙+1 ⊗ 𝜎𝜎′ 𝑧𝑧𝑙𝑙

• To compute ℎ𝑙𝑙 𝑥𝑥 , we need to do a forward pass.
• To compute 𝑔𝑔𝑙𝑙, we need to do a backward pass.

Computation time and memory usage.

• So what is the computation time and memory usage of backpropagation?
• For simplicity, let’s consider the case where all 𝑑𝑑𝑙𝑙 = 𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙 ≤ 𝐿𝐿 + 1
• Let’s first think about computing h(W, x) (forward pass)

• Computation time: O(𝑑𝑑2𝐿𝐿) (there are L many dxd matrix times dx1 vector
operations).

• Memory usage: O(d) (only need to store ℎ𝑙𝑙 𝑥𝑥 when computing ℎ𝑙𝑙+1 𝑥𝑥)

Computation time and
memory usage.
• Backpropagation:

• We know that ∇𝑊𝑊𝑙𝑙ℎ 𝑊𝑊, 𝑥𝑥 = 𝑔𝑔𝑙𝑙ℎ𝑙𝑙 𝑥𝑥 𝑇𝑇

• Where 𝑔𝑔𝑙𝑙 = 𝑊𝑊𝑙𝑙+1
T 𝑔𝑔𝑙𝑙+1 ⊗ 𝜎𝜎′ 𝑧𝑧𝑙𝑙

• Computation time:
• O(𝑑𝑑2𝐿𝐿) to compute every ℎ𝑙𝑙 𝑥𝑥 and 𝜎𝜎′ 𝑧𝑧𝑙𝑙
• O(𝑑𝑑2𝐿𝐿) to compute every 𝑔𝑔𝑙𝑙
• So total time is still O(𝑑𝑑2𝐿𝐿) – As fast as the forward pass.

• Memory usage:
• O(𝑑𝑑 𝐿𝐿) to memorize every ℎ𝑙𝑙 𝑥𝑥 and 𝜎𝜎′ 𝑧𝑧𝑙𝑙
• O(𝑑𝑑 𝐿𝐿) to memorize every 𝑔𝑔𝑙𝑙
• This is much higher than the O(d) memory usage for forward pass.
• For example, for a 96 layers model, it uses 96 x 3 = 288 times more memory!

Model parallel in
backpropagation
• Key challenge: What if O(𝑑𝑑𝐿𝐿) is too large for my GPU’s

memory?

• A100 has 80G memory, it can maximally hold the
backpropagation of a ~7B transformer model with context
length 2048.

• What if I want to train a 70B parameter model?

• Solution: Model parallel/Pipeline parallel

Pipeline parallel in
backpropagation

• Key idea: Suppose we have M gpus, then we divide the
weights into M groups:

• (𝑊𝑊1,𝑊𝑊2, … ,𝑊𝑊𝐿𝐿+1
𝑀𝑀

, 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝐿𝐿+1
𝑀𝑀

)

• (𝑊𝑊𝐿𝐿+1
𝑀𝑀 +1,𝑊𝑊𝐿𝐿+1

𝑀𝑀 +2, … ,𝑊𝑊2𝐿𝐿+1𝑀𝑀
, 𝑏𝑏𝐿𝐿+1

𝑀𝑀 + 1, 𝑏𝑏𝐿𝐿+1
𝑀𝑀 +2, … , 𝑏𝑏2𝐿𝐿+1𝑀𝑀

)

• …

• Each GPU only operates on one group of weights.

Pipeline parallel in backpropagation
• We know that ∇𝑊𝑊𝑙𝑙ℎ 𝑊𝑊, 𝑥𝑥 = 𝑔𝑔𝑙𝑙ℎ𝑙𝑙 𝑥𝑥 𝑇𝑇

• Where 𝑔𝑔𝑙𝑙 = 𝑊𝑊𝑙𝑙+1
T 𝑔𝑔𝑙𝑙+1 ⊗ 𝜎𝜎′ 𝑧𝑧𝑙𝑙

• Model parallel
• Gpu-1 computes ℎ𝐿𝐿+1

𝑀𝑀
(𝑥𝑥) and sends to gpu2.

• Gpu-2 computes ℎ2𝐿𝐿+1𝑀𝑀
(𝑥𝑥) and sends to gpu3.

• ...
• Gpu-M computes ℎ𝐿𝐿+1 𝑥𝑥 , then computes 𝑔𝑔 𝑀𝑀−1 𝐿𝐿+1

𝑀𝑀 +1 and sends to gpu-(M - 1)

• Gpu-(M-1) computes 𝑔𝑔 𝑀𝑀−2 𝐿𝐿+1
𝑀𝑀 +1 and send to gpu-(M - 2)

• …
• Gpu-(2) computes 𝑔𝑔𝐿𝐿+1

𝑀𝑀 +1 and sends to gpu-1

• Memory usage per GPU: O(𝑑𝑑𝐿𝐿
𝑀𝑀

)

Model parallel in
backpropagation

• Also known as Tensor Parallel.
• To compute ∇𝑊𝑊𝑙𝑙ℎ 𝑊𝑊, 𝑥𝑥

• We know that ∇𝑊𝑊𝑙𝑙ℎ 𝑊𝑊, 𝑥𝑥 = 𝑔𝑔𝑙𝑙ℎ𝑙𝑙 𝑥𝑥 𝑇𝑇

• Where 𝑔𝑔𝑙𝑙 = 𝑊𝑊𝑙𝑙+1
T 𝑔𝑔𝑙𝑙+1 ⊗ 𝜎𝜎′ 𝑧𝑧𝑙𝑙

• Key idea: each GPU only stores 𝑑𝑑
𝑀𝑀

coordinates of each 𝑔𝑔𝑙𝑙, ℎ𝑙𝑙 and 𝜎𝜎′ 𝑧𝑧𝑙𝑙
• Communication cost is higher than pipeline

parallel, but computation speed is faster.

Backpropagation
for general
computation
graph

We learned backpropagation to compute the
gradient in MLP.

But in later lectures, we will learn neural
networks that are not simply MLP
(normalization layers, attention layers, etc.)

We want to have a generic algorithm to
compute the gradient w.r.t. any computation
graph.

Backpropagation
for general

computation
graph

• A computation graph is defined by a directed acyclic graph
G.

• Each vertex v is associated with a function 𝐹𝐹𝑊𝑊𝑣𝑣, the
function takes input the outputs of all the in-neighbors of v,
then outputs a vector.

• The output of the vertex v is this vector.

• The node without any in-neighbors is the input node (x).
The node without any out-neighbors is the output node
(h(W, x))

• 𝑊𝑊 = 𝑊𝑊𝑣𝑣 𝑣𝑣∈𝑉𝑉(𝐺𝐺)

Backpropagation for general computation
graph
• How do we compute the gradient of h(W, x) with respect to the

weight 𝑊𝑊𝑣𝑣 ?
• We can write ℎ 𝑊𝑊, 𝑥𝑥 =

𝐺𝐺 𝐹𝐹𝑊𝑊𝑣𝑣𝑣
𝐹𝐹𝑊𝑊𝑣𝑣 𝑧𝑧𝑣𝑣 ,∗

𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑎𝑎 𝑜𝑜𝑜𝑜𝑡𝑡 𝑛𝑛𝑎𝑎𝑖𝑖𝑛𝑛𝑡𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑜𝑜𝑜𝑜 𝑣𝑣

• Here * denotes the other inputs to 𝐹𝐹𝑊𝑊𝑣𝑣𝑣
.

• 𝑧𝑧𝑣𝑣 is the input to 𝐹𝐹𝑊𝑊𝑣𝑣.

Backpropagation for general computation
graph

• ℎ 𝑊𝑊, 𝑥𝑥 = 𝐺𝐺 𝐹𝐹𝑊𝑊𝑣𝑣𝑣
𝐹𝐹𝑊𝑊𝑣𝑣 𝑧𝑧𝑣𝑣 ,∗

𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑎𝑎 𝑜𝑜𝑜𝑜𝑡𝑡 𝑛𝑛𝑎𝑎𝑖𝑖𝑛𝑛𝑡𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑜𝑜𝑜𝑜 𝑣𝑣

• Again, let’s consider the case that the output dimension of h is 1.
• Then we know that for 𝑓𝑓𝑣𝑣= 𝐹𝐹𝑊𝑊𝑣𝑣 𝑧𝑧𝑣𝑣 , ∗∗ is the input to G:
• ∇𝑊𝑊𝑣𝑣ℎ 𝑊𝑊, 𝑥𝑥 =

�
𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑎𝑎 𝑜𝑜𝑜𝑜𝑡𝑡 𝑛𝑛𝑎𝑎𝑖𝑖𝑛𝑛𝑡𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑜𝑜𝑜𝑜 𝑣𝑣

�
𝑖𝑖

∇𝑊𝑊𝑣𝑣[𝐹𝐹𝑊𝑊𝑣𝑣 𝑧𝑧𝑣𝑣 𝑖𝑖]∇[𝑎𝑎𝑣𝑣]𝑖𝑖 𝐹𝐹𝑊𝑊𝑣𝑣𝑣
𝑓𝑓𝑣𝑣,∗ ∇𝑣𝑣𝑣𝐺𝐺(∗∗)

Backpropagation for general computation
graph
• ∇𝑊𝑊𝑣𝑣ℎ 𝑊𝑊, 𝑥𝑥 =

�
𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑎𝑎 𝑜𝑜𝑜𝑜𝑡𝑡 𝑛𝑛𝑎𝑎𝑖𝑖𝑛𝑛𝑡𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑜𝑜𝑜𝑜 𝑣𝑣

�
𝑖𝑖

∇𝑊𝑊𝑣𝑣𝐹𝐹𝑊𝑊𝑣𝑣 𝑧𝑧𝑣𝑣 𝑖𝑖 ∇[𝑎𝑎𝑣𝑣]𝑖𝑖 𝐹𝐹𝑊𝑊𝑣𝑣𝑣
𝑓𝑓𝑣𝑣,∗ ∇𝑣𝑣𝑣𝐺𝐺(∗∗)

• The induction relationship:
• ∇𝑣𝑣𝐺𝐺 = ∑𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑎𝑎 𝑜𝑜𝑜𝑜𝑡𝑡 𝑛𝑛𝑎𝑎𝑖𝑖𝑛𝑛𝑡𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛 𝑜𝑜𝑜𝑜 𝑣𝑣 ∇𝑎𝑎𝑣𝑣 𝐹𝐹𝑊𝑊𝑣𝑣𝑣

𝑓𝑓𝑣𝑣,∗ ∇𝑣𝑣𝑣𝐺𝐺

• So, we still need
• Forward pass, in order to compute 𝑧𝑧𝑣𝑣, 𝑓𝑓𝑣𝑣= 𝐹𝐹𝑊𝑊𝑣𝑣 𝑧𝑧𝑣𝑣 .
• Backward pass, in order to compute ∇𝐺𝐺𝑣𝑣

	10417/10617�Intermediate Deep Learning:�Fall 2023
	Training of neural networks: Backpropagation
	Training of neural networks
	Training of neural networks
	Gradient computation
	Gradient computation
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Backpropagation
	Computation time and memory usage.
	Computation time and memory usage.
	Model parallel in backpropagation
	Pipeline parallel in backpropagation
	Pipeline parallel in backpropagation
	Model parallel in backpropagation
	Backpropagation for general computation graph
	Backpropagation for general computation graph
	Backpropagation for general computation graph
	Backpropagation for general computation graph
	Backpropagation for general computation graph

