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Lecture 2: 
Deep 
learning 
basics: 
Perceptron

• In the previous lecture, we learned that a 
feed-forward neural network (FFN) is 
defined as:

• 𝐹𝐹 𝑥𝑥 = 𝑊𝑊𝐿𝐿+1 𝜎𝜎(
)

𝑊𝑊𝐿𝐿𝜎𝜎(
)

𝑊𝑊𝐿𝐿−1𝜎𝜎 ∘ ⋯ ∘
𝜎𝜎(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1 … + 𝑏𝑏𝐿𝐿 −1 + 𝑏𝑏𝐿𝐿) + 𝑏𝑏𝐿𝐿+1

• This is called a L-hidden-layer FFN.
• One single unit: 𝑛𝑛 𝑥𝑥 = 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 where 

w, x are d dimensional vectors, b is a scaler. 



Perceptron

• One single unit: 𝑛𝑛 𝑥𝑥 = 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 where w, x are d dimensional vectors, b is a scaler. 

• When 𝜎𝜎 is the step function (𝜎𝜎 𝑥𝑥 = 0 𝑖𝑖𝑖𝑖 𝑥𝑥 < 0, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝜎𝜎 𝑥𝑥 = 1), this unit is called 
the “perceptron”.

• Perceptron was invented in 1943 by Warren McCulloch and Walter Pitts. 

• Perceptron is known as the “simplest feed forward neural network”.



Using a perceptron as a 
learner.

• How do we train a perceptron learner?

• Perceptron is typically used in supervised 
learning, binary classification, where we have N 
training data 𝑥𝑥(1), 𝑥𝑥(2), … , 𝑥𝑥 𝑁𝑁 ∈ 𝑅𝑅𝑑𝑑, and 
labels 𝑦𝑦(1),𝑦𝑦(2), … , 𝑦𝑦 𝑁𝑁 ∈ {0, 1}

• We typically train a perceptron learner using 
MSE loss (Mean Square Error loss), meaning we 
want to minimize

• 𝐿𝐿(𝑤𝑤, 𝑏𝑏) = 1
𝑁𝑁
∑𝑖𝑖∈ 𝑁𝑁 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦 𝑖𝑖 2



The representation power of perceptron

What functions can 
perceptron 

approximate?

Perceptron can only 
approximate 0, 1 
functions that are 
linearly separable.



The 
representation 

power of 
perceptrons

• A single perceptron does not 
look good … It’s almost a linear 
function. 

• What about we use a linear 
combination of perceptrons?

• What about using 𝑛𝑛 𝑥𝑥 =
∑𝑖𝑖∈[𝑚𝑚]𝑎𝑎𝑖𝑖𝜎𝜎 𝑤𝑤𝑖𝑖𝑇𝑇𝑥𝑥 + 𝑏𝑏 ?



Linear 
combination of 

perceptrons

• 𝑛𝑛 𝑥𝑥 = ∑𝑖𝑖∈[𝑚𝑚]𝑎𝑎𝑖𝑖𝜎𝜎 𝑤𝑤𝑖𝑖𝑇𝑇𝑥𝑥 + 𝑏𝑏
• Theorem: As 𝑚𝑚 → ∞,𝑛𝑛(𝑥𝑥) can 

approximate any Lipschitz 
function of x! (where x is d 
dimensional).



Linear combination of perceptrons

• Proof: For every Lipschitz function G in R (one dimensional), we can 
approximate G by writing it as:

• 𝐺𝐺 𝑥𝑥 = ∑𝑖𝑖 𝐼𝐼𝑥𝑥𝑖𝑖 𝑥𝑥 × 𝐺𝐺(𝑥𝑥𝑖𝑖)
• Where each 𝑥𝑥𝑖𝑖 = −𝐶𝐶 + 𝜖𝜖𝜖𝜖, for a sufficiently large C and sufficiently 

small 𝜖𝜖 > 0, for 𝑖𝑖 ∈ 2𝐶𝐶
𝜖𝜖

, and 𝐼𝐼𝑥𝑥𝑖𝑖 𝑥𝑥 = 1 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ �
�

𝑥𝑥𝑖𝑖 −
𝜖𝜖
2

, 𝑥𝑥𝑖𝑖 +
𝜖𝜖
2

, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐼𝐼𝑥𝑥𝑖𝑖 𝑥𝑥 = 0.



Linear combination of perceptrons

• 𝐺𝐺 𝑥𝑥 = ∑𝑖𝑖 𝐼𝐼𝑥𝑥𝑖𝑖 𝑥𝑥 × 𝐺𝐺(𝑥𝑥𝑖𝑖)
• For each 𝐼𝐼𝑥𝑥𝑖𝑖 𝑥𝑥 , we can write it as:

• 𝐼𝐼𝑥𝑥𝑖𝑖 𝑥𝑥 = 𝜎𝜎 𝑥𝑥 − (𝑥𝑥𝑖𝑖 −
𝜖𝜖
2
) + 𝜎𝜎 𝑥𝑥𝑖𝑖 + 𝜖𝜖

2
− 𝑥𝑥 − 1

• So 𝐺𝐺 𝑥𝑥 = ∑𝑖𝑖 𝜎𝜎 𝑥𝑥 − (𝑥𝑥𝑖𝑖 −
𝜖𝜖
2
) + 𝜎𝜎 𝑥𝑥𝑖𝑖 + 𝜖𝜖

2
− 𝑥𝑥 − 1 × 𝐺𝐺(𝑥𝑥𝑖𝑖)



Linear combination of perceptrons

• For high dimensional G, we can use the Fourier Transformation: There 
exists 𝐹𝐹:𝑅𝑅𝑑𝑑 → 𝑅𝑅 such that:

• 𝐺𝐺 𝑥𝑥 = ∫𝑅𝑅𝑑𝑑 𝐹𝐹 𝑤𝑤 cos 2𝜋𝜋 × 𝑤𝑤𝑇𝑇𝑥𝑥 𝑑𝑑𝑑𝑑
• This means that we can look at each one dimensional function 
𝐹𝐹 𝑤𝑤 cos 2𝜋𝜋 × 𝑤𝑤𝑇𝑇𝑥𝑥 (along dimension 𝑤𝑤), and apply our previous 
approximation result.



Linear 
combination 
of 
perceptrons

The same proof applies to 
non-linear activations such as 
sigmoid, ReLU.

Linear combinations of 
ReLU/sigmoid functions can 
approximate a step function 
in one dimension (R).



Linear 
combination 
of 
perceptrons

• One single unit: 𝑛𝑛 𝑥𝑥 = 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 is 
nothing more than a (threshold) linear 
function …

• But the linear combination 
∑𝑖𝑖∈[𝑚𝑚]𝑎𝑎𝑖𝑖𝜎𝜎 𝑤𝑤𝑖𝑖𝑇𝑇𝑥𝑥 + 𝑏𝑏 can approximate any 
Lipschitz function in dimension d, as long as 
𝑚𝑚 → ∞

• Note: Similar result as above can be derived 
for activation function 𝜎𝜎 that is ReLU, GeLU, 
sigmoid, etc, but not polynomial activations.



Depth versus 
Width

• Recall in the last lecture, we learnt that:
• 𝐹𝐹 𝑥𝑥 = 𝑊𝑊𝐿𝐿+1 𝜎𝜎(

)
𝑊𝑊𝐿𝐿𝜎𝜎(

)
𝑊𝑊𝐿𝐿−1𝜎𝜎 ∘ ⋯ ∘

𝜎𝜎(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1 … + 𝑏𝑏𝐿𝐿 −1 + 𝑏𝑏𝐿𝐿) + 𝑏𝑏𝐿𝐿+1
• Can approximate any Lipschitz function, as 

long as 𝜎𝜎 is non linear and
L → ∞,𝑑𝑑𝑙𝑙+1 ≥ 2𝑑𝑑.

• In this lecture we learnt that even for L = 1, 
F(x) can approximate any Lipschitz function, 
as long as 𝑑𝑑2 → ∞ , when the activation 
function 𝜎𝜎 that is ReLU, GeLU, sigmoid, etc.

• So no matter whether depth goes to infinity 
or width goes to infinity, neural networks are 
universal approximator. 



Depth versus Width

So no matter whether depth goes to infinity or width goes to 
infinity, neural networks are universal approximators.

Do we want a very wide shallow or not-so-wide deep network??



Depth versus Width: Depth win
• Main Theorem: 

• For every width m, 1-hidden-layer FFN, there exists 
a depth-m FFN with width 2d that computes the 
same function.

• Theorem: There exists a 2-hidden-layer FFN of 
width 2d, such that

• any 1-hidden-layer FFN (with any activation 
functions) that approximates it requires width 
≥ exp(𝑑𝑑).

• Depth can approximate width efficiently, but width 
can not approximate depth efficiently. 



Intuition where depth matters

• Think about the function 𝑓𝑓 𝑥𝑥 = 𝑥𝑥12 + 𝑥𝑥22 + … + 𝑥𝑥𝑑𝑑2
𝑑𝑑

• Using two hidden layer network, the first hidden layer can 
approximate the function 𝑛𝑛 𝑥𝑥 = 𝑥𝑥12 + 𝑥𝑥22 + … + 𝑥𝑥𝑑𝑑2 easily, with 
quadratic activation (can also be approximated efficiently with ReLU
activation).

• The second layer can approximate the function 𝑛𝑛 𝑧𝑧 = 𝑧𝑧𝑑𝑑 easily, with 
degree d activation (can also be approximated efficiently with ReLU
activation).

• However, for a one-hidden layer network to approximate this function, 
we need to write 𝑓𝑓 𝑥𝑥 as a sum of simple functions. Expanding f as a 
sum has exponentially many terms.



Multi-layer 
perceptron 
(MLP)

• 𝐹𝐹 𝑥𝑥 = 𝑊𝑊𝐿𝐿+1 𝜎𝜎(
)

𝑊𝑊𝐿𝐿𝜎𝜎(
)

𝑊𝑊𝐿𝐿−1𝜎𝜎 ∘ ⋯ ∘
𝜎𝜎(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1 … + 𝑏𝑏𝐿𝐿 −1 + 𝑏𝑏𝐿𝐿) + 𝑏𝑏𝐿𝐿+1

• With  L > 1, is also known as the Multi-layer 
perceptron (MLP). 

• MLP is used as one of the building block for 
transformer (even in GPT4).

• **Important**: Multi-layer perceptron does 
not require the activation to be the step 
function, any non-linear activation is fine.

• A perceptron (single layer perceptron) 
requires the activation function to be the 
step function.



The choice of activation function

Another key question for MLPs is: How do we choose the activation 
functions?

We know that any non-linear activation function would make MLPs 
universal approximators. 

The key difference in the 
activation functions lies in the 

“optimization difficulty” difference.



Optimizing 
MLPs

• Let’s just consider a single unit 𝑛𝑛 𝑥𝑥 =
𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 .

• And we want to minimize the MSE loss:

• 𝐿𝐿(𝑤𝑤, 𝑏𝑏) = 1
𝑁𝑁
∑𝑖𝑖∈ 𝑁𝑁 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦 𝑖𝑖 2

• How do we fine the w, b that minimizes the 
MSE loss?



Gradient Descent

• A general method of minimizing a function is gradient descent.
• Starting with (arbitrary) 𝑤𝑤(0), 𝑏𝑏(0), at every iteration t, we update:

• (𝑤𝑤(𝑡𝑡+1), 𝑏𝑏(𝑡𝑡+1)) = (𝑤𝑤(𝑡𝑡), 𝑏𝑏(𝑡𝑡)) − 𝜂𝜂∇𝐿𝐿 𝑤𝑤 𝑡𝑡 , 𝑏𝑏 𝑡𝑡

• Here, ∇𝐿𝐿 𝑤𝑤, 𝑏𝑏 = ∇ 1
𝑁𝑁
∑𝑖𝑖∈ 𝑁𝑁 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦 𝑖𝑖 2

• ∇w 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦 𝑖𝑖 2
= 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦 𝑖𝑖 ×

𝜎𝜎′ 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 × 𝑥𝑥 𝑖𝑖

• ∇b 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦 𝑖𝑖 2
= 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦 𝑖𝑖 ×

𝜎𝜎′ 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏



Gradient Descent

• ∇w 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦 𝑖𝑖 2
= 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦 𝑖𝑖 × 𝜎𝜎′ 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 × 𝑥𝑥 𝑖𝑖

• ∇b 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦 𝑖𝑖 2
= 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦 𝑖𝑖 × 𝜎𝜎′ 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏

• When 𝜎𝜎 is the step function, 𝜎𝜎′ 𝑧𝑧 = 0 for every z.
• This means that the weights of the neural network won’t be updated by gradient descent 

…
• Key observation: We need the activation functions to have “non-zero gradient”  and 

“uniform gradients” (not very large and very small at different places). 



Gradient Descent

• Key observation: We need the activation functions to have “non-zero gradient”  and “uniform 
gradients” (not very large and very small at different places). 

• Step function has zero-gradient, not good.

• Sigmoid function: The gradient vanishes (almost zero) for z being relatively small or large (|z| > 10), not 
good.

• Quadratic activation: The gradient explodes when the norm of z is too large, not good. 

• Good activation: ReLU activation, the gradient is either 0 (z < 0) or 1 (z >= 0).

• Better activation: Leaky-ReLU activation, the gradient is either –a (z < 0) or 1 (z > 0).

• Great activation: GeLU activation, 𝜎𝜎 𝑧𝑧 = 𝑧𝑧
2

× 1 + erf 𝑧𝑧
20.5 ,𝜎𝜎′ 𝑧𝑧 ∈ −1, 1 and GeLU is smooth.



Different activation functions



Optimization Landscape

The optimization landscape of neural networks is 
non-convex.

Optimization algorithms are not guaranteed to 
converge to the global minimal.

But it just works in deep learning (with the help 
of over-parameterization).
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