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Language Modeling Part I: Tokenization, Training Objective and 

Positional Encodings



VIT Large (the original 
vision transformer)

• Convert input image to 16x16 total 
patches (total 256 vectors).

• For each patch, apply an embedding 
layer to map it to dimension 1024.

• Apply 24 transformer blocks, each 
transformer block has a one-hidden-
layer MLP of size 1024 -> 4096 -> 1024.

• Each transformer block as a Multi-
Head Attention layer with 16 heads.

• Total 307M parameters (very small for a 
transformer).



We learnt a 
transformer model

• Step 1: Map the input to a sequence of vectors.
• Step 2: Go through an embedding layer that 

changes the dimension of the vectors.
• Step 3: Apply MHA (Multi-Head Attention) + 

Residual Link
• Step 4: Apply MLP + Residual Link
• Step 5: Repeat 3, 4 for multiple times.
• Step 6: Apply another layer that maps the final 

embedding layer to the output.



From Image to Language

For vision application, we can cut it into patches to get a sequence of input vectors.

The training objective is classification/reconstruction.

What about language?

Given a sentence “Alice likes to swim, so she asks Bob to 
go fishing with her and then she jumps into the water.”

How to break it into a sequence of vectors?

What is the training objective?



We learnt a transformer model

Today, we focus on 
Steps 1 and 6 for 
language modeling.
• Step 1: Map the input to 

a sequence of vectors.
• Step 6: Apply another 

layer that maps the final 
embedding layer to the 
output.

Step 1: How to 
map the input 
sentence to a 
sequence of 
vectors.
• Tokenizer + 

Positional 
Encoding.

Step 6: What is 
the training 
objective?



Tokenizer



Tokenizer

Tokenizer maps an input sentence (of any length, in any language) to a list (the 
length may vary depending on the sentence).

Example: GPT2-Tokenizer(“Alice likes to swim, so she asks BoBBB to go fishing with 
her and then she jumps into the water”) = [44484 7832 284 9422 11 523 673 7893 
3248 15199 33 284 467 12478 351 607 290 788 673 18045 656 262 1660]

How are these numbers computed?



Tokenizer

A tokenizer is consistent of the following pieces:

• "groupon": 14531, "\u0120jokes": 14532, "\u0120Benjamin": 14533, 
"\u0120Random": 14534, "frame": 14535, "\u0120Lions": 14536, 
"\u0120highlighted": 14537,  ….

A vocab.json, which maps subwords into integers

A pre-tokenization rule.



Pre-tokenization

Given a sentence like “Alice likes to swim, so she asks 
BoBBB to go fishing with her and then she jumps into 
the water.”

Pre-tokenization split the sentence into words 
according to a prescribed list of special symbols.

Typically, those are space + punctuations 
- Period (.)
- Comma (,)
- Question mark (?)
…



Pre-tokenization

Given input sentence “Alice likes to swim, so she asks BoBBB to go fishing with 
her and then she jumps into the water.”

(1). Split according to punctuation. So it 
becomes

[Alice likes to swim] [,] [so she asks BoBBB to go 
fishing with her and then she jumps into the 
water] [.]

(2). Split each chunk according to space, 
but merge the space with the word after 
it. So the first chunk is splitted to

[Alice], [\u0120likes], [\u0120to], [\u0120swin]

\u0120 represents space.



Pre-tokenization

Split each chunk according 
to space, but merge the 
space with the word after it.

Special Notice: If we have 
things like [\u0120][,], we 
also merge it to [\u0120,]



Tokenization

“Alice likes to swim, so she asks BoBBB to go fishing with her and then she jumps into the 
water.” -- After pretokenization, we get a list

[Alice], [\u0120likes], [\u0120to], [\u0120swin], [,] [so], [\u0120she]…

For each word in the list, we find the longest subword in the vocab.json that matches the 
prefix of the word.

• “Alice”: 44484, “\u0120likes”: 7832, “\u0120to”: 284, …
• So we map them to [44484, 7832, 284, …]
• “\u0120BoBBB” is not in the vocab.json. Longest prefix is “\u0120Bo”: 3248
• Then we have “BBB”, “BBB” is not in the vocab.json, longest prefix is “BB”: 15199, then we have “B”: 33
• So we map “\u0120BoBBB” to [3248, 15199, 33]



Tokenization

• GPT2-Tokenizer(“Alice likes to swim, so she asks BoBBB to go fishing 
with her and then she jumps into the water”) = [44484 7832 284 
9422 11 523 673 7893 3248 15199 33 284 467 12478 351 607 290 
788 673 18045 656 262 1660]



Vocab.json

How was the vocab.json constructed?

On one hand, we want the prefix to be as long as possible, so we tokenize each chunk 
into fewer tokens.

On the other hand, we don’t want the vocab size to be too large (one token per every 
possible chunk, even things like [%WIUORQNCXKZJYTQ%VHKSJVASTXN%])

Given a training corpus, we want to solve the following problem:

• Minmize the length of the tokenization of the corpus, subject to the vocab size <= M.



Byte-Pair Encoding

• One of the algorithm to find the vocab.json given a training corpus

• Maintain a list of subwords.

• Initially, the list of subwords are all the bytes (chars like a, b, c, d, …)

• Loop:
• Merge the two subwords that are most likely to appear next 

to each other in the corpus into one and create a new 
subword. Until the total number of subwords = M.

• [you][would][like][to][take][some][cake][or][pick][some][meat]
• Merge k, e to ke
• Merge m, e to me
• Merge a, ke to ake
• Merge o, me to ome
• …



After tokenization

After tokenization, we map a sentence into a list of integers like [3260 
11241 1634 11 356 3975 257 6827 656 257 1351 286 37014 220]

Each integer is called a token.

How do we train a language model on a giant list of integers (>1T 
tokens)?
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How do we train a language model on a 
giant list of integers (>1T tokens)?

Step 1: Split the giant list into chunks of 
length context_length (typically 
512/1024/2048/4096/8192/16K/32K/128K).

Over each chunk, there are two objectives 
we can use:

• Mask Language Modeling Objective.
• Autoregressive Language Modeling Objective.
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Given a chunk like X = [3260 11241 1634 11 356 3975 
257 6827 656 257 1351 286 37014 220]

Randomly mask 15% of the tokens to <mask>, so we 
get things like

X’ = [3260 11241 1634 <mask> 356 3975 257 6827 
656 <mask> 1351 286 37014 220]

Taking X’ as the input, the objective is to predict the 
label, which is X.

Alice is a <mask> student, she always scores 0 on her 
exams. On the other <mask>, Bob is a good <mask>.



Autoregressive 
Language 
Modeling 
Objective

• The more commonly used training objective 
is Autoregressive Language Modeling 
Objective.

• Given a list of integers X of length 
context_length, for every 𝑖𝑖 ∈
[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐𝑙 − 1], we want to predict 
X[i + 1] given X[0:i+1]

• Alice is a horrible student, she always scores 
_ (should predict something corresponding 
to a low score).

• In this way, we can train a generative model 
like GPT-4.



Training Transformer Based Models

So the input is a list of integers, and the label is another (list of) 
integers.

How do we use a transformer model on this task?

Labels: (List of) Integers – This is fine, we can use cross entropy 
loss.

Input: List of integers.



Embedding Layer

Given a list of integers of length L.

We first map it into a list of one-hot vectors, each of dimension vocab_size.

Then, we apply an (trainable) 
embedding layer.

A linear function of vocab_size -> emb_dim to 
map each vector to emb_dim.

So we get L vectors, each of emb_dim.



Positional Encoding

So we get L vectors, each of 
emb_dim.

How can we keep the positional 
information of those vectors?

“Alice likes Bob” is totally 
different from “Bob likes Alice”.

We will use the so-called 
positional encoding.



Absolute Positional Encoding

• Given a list of L vectors 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐿𝐿, each of dimension emb_dim.
• For each l, we add 𝑝𝑝𝑙𝑙 (trainable positional encoding vector) to 𝑐𝑐𝑙𝑙 and 

get another vector. Then we apply Layer Normalization on each 
vector.

• We feed the new list of vectors to the transformer.



Rotary Positional Encoding

•  Given a list of L vectors 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐿𝐿, each x is of dimension emb_dim
• Rotary positional encoding (not trainable) maps each 𝑐𝑐𝑙𝑙 to 𝑟𝑟𝑐𝑐𝑐𝑐(𝑐𝑐𝑙𝑙) =
𝑐𝑐𝑙𝑙′ :

• 𝑐𝑐𝑙𝑙′ 2𝑘𝑘 = 𝑐𝑐𝑙𝑙 2𝑘𝑘 cos(𝜃𝜃𝑘𝑘𝑙𝑙)  − 𝑐𝑐𝑙𝑙 2𝑘𝑘 + 1 sin(𝜃𝜃𝑘𝑘𝑙𝑙) 
• 𝑐𝑐𝑙𝑙′ 2𝑘𝑘 + 1 = 𝑐𝑐𝑙𝑙 2𝑘𝑘 sin(𝜃𝜃𝑘𝑘𝑙𝑙) + 𝑐𝑐𝑙𝑙 2𝑘𝑘 + 1 cos(𝜃𝜃𝑘𝑘𝑙𝑙) 
• If we view 𝑧𝑧𝑙𝑙,𝑘𝑘 =  𝑐𝑐𝑙𝑙 2𝑘𝑘 + 𝑖𝑖𝑐𝑐𝑙𝑙[2𝑘𝑘 + 1], then 𝑧𝑧𝑙𝑙,𝑘𝑘′ = 𝑧𝑧𝑙𝑙,𝑘𝑘𝑐𝑐𝑖𝑖𝜃𝜃𝑘𝑘𝑙𝑙.
• For every 𝑘𝑘 ∈ [𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟], where 2𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 is the rotary embedding dimension 

(typically emb_dim//2).

• Where 𝜃𝜃𝑘𝑘 = 1
10000−𝑘𝑘/𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟

.



Rotary Positional Encoding

• 𝑧𝑧𝑙𝑙,𝑘𝑘′ = 𝑧𝑧𝑙𝑙,𝑘𝑘𝑐𝑐𝑖𝑖𝜃𝜃𝑘𝑘𝑙𝑙

• We know that < 𝑧𝑧𝑙𝑙,𝑘𝑘 
′ , 𝑧𝑧𝑙𝑙′,𝑘𝑘

′ > = 𝑧𝑧𝑙𝑙,𝑘𝑘 𝑧𝑧𝑙𝑙′,𝑘𝑘𝑐𝑐𝑖𝑖𝜃𝜃𝑘𝑘(𝑙𝑙 −𝑙𝑙′)

• We apply Rotary Positional Encoding to the MHA layer directly.
• Instead of computing < 𝑄𝑄𝑐𝑐𝑙𝑙 ,𝐾𝐾𝑐𝑐𝑙𝑙′ > 𝑙𝑙′∈[𝑐𝑐𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟_𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝑟𝑟𝑙] for the 

softmax, we compute < 𝑟𝑟𝑐𝑐𝑐𝑐(𝑄𝑄𝑐𝑐𝑙𝑙), 𝑟𝑟𝑐𝑐𝑐𝑐(𝐾𝐾𝑐𝑐𝑙𝑙′) > 𝑙𝑙′∈[𝑐𝑐𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟_𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝑟𝑟𝑙] 

• Key observation: If 𝑐𝑐𝑙𝑙 = 𝑐𝑐𝑙, 𝑐𝑐𝑙𝑙+𝑝𝑝 = 𝑐𝑐𝑙+𝑝𝑝, then (shift invariant)
• < 𝑟𝑟𝑐𝑐𝑐𝑐 𝑄𝑄𝑐𝑐𝑙𝑙 , 𝑟𝑟𝑐𝑐𝑐𝑐 𝐾𝐾𝑐𝑐𝑙𝑙+𝑝𝑝 > =< 𝑟𝑟𝑐𝑐𝑐𝑐(𝑄𝑄𝑐𝑐𝑙), 𝑟𝑟𝑐𝑐𝑐𝑐(𝐾𝐾𝑐𝑐𝑙+𝑝𝑝) >
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