10417/10617

Language Modeling Part I: Tokenization, Training Objective and
Positional Encodings

VIT Large (the original
vision transformer)

e Convert input image to 16x16 total
patches (total 256 vectors).

* For each patch, apply an embedding
layer to map it to dimension 1024.

* Apply 24 transformer blocks, each
transformer block has a one-hidden-
layer MLP of size 1024 -> 4096 -> 1024.

e Each transformer block as a Multi-
Head Attention layer with 16 heads.

e Total 307M parameters (very small for a
transformer).

We learnt a
transformer model

e Step 1: Map the input to a sequence of vectors.

e Step 2: Go through an embedding layer that
changes the dimension of the vectors.

e Step 3: Apply MHA (Multi-Head Attention) +
Residual Link

» Step 4: Apply MLP + Residual Link
* Step 5: Repeat 3, 4 for multiple times.

» Step 6: Apply another layer that maps the final
embedding layer to the output.

From Image to Language

p—y
</> For vision application, we can cut it into patches to get a sequence of input vectors.
[|
= The training objective is classification/reconstruction.
BB

- What about language?

_»J Given a sentence “Alice likes to swim, so she asks Bob to How to break it into a sequence of vectors?
go fishing with her and then she jumps into the water.” What is the training objective?

We learnt a transformer model

Tokenizer

¥ Hugging Face Q_ Search models, datasets, users... # Models = Datasets Spaces

Hugging Face is way more fun with friends and colleagues! & Join an organization

* Transformers v

Q_ Search documentation Ctrl+K
V4341 v EN v) 13719
Models

Text Generation
ONNX
Optimization
Model outputs
Pipelines
Processors
Quantization

Tokenizer

Trainer
DeepSpeed Integration
Feature Extractor

Image Processor

MODELS
TEXT MODELS

VISION MODELS

Tokenizer

Atokenizer is in charge of preparing the inputs for a model. The library contains tokenizers for all the models. Most of the
tokenizers are available in two flavors: a full python implementation and a “Fast” implementation based on the Rust library £

Tokenizers. The “Fast” implementations allows:

1. asignificant speed-up in particular when doing batched tokenization and

2. additional methods to map between the original string (character and words) and the token space (e.g. getting the index of

the token comprising a given character or the span of characters corresponding to a given token).

The base classes PreTrainedTokenizer and PreTrainedTokenizerFast implement the common methods for encoding string inputs
in model inputs (see below) and instantiating/saving python and “Fast” tokenizers either from a local file or directory or from a

pretrained tokenizer provided by the library (downloaded from HuggingFace’s AWS S3 repository). They both rely on

PreTrainedTokenizerBase that contains the common methods, and SpecialTokensMixin.

PreTrainedTokenizer and PreTrainedTokenizerFast thus implement the main methods for using all the tokenizers:

Tokenizing (splitting strings in sub-word token strings), converting tokens strings to ids and back, and encoding/decoding

(i.e., tokenizing and converting to integers).

Adding new tokens to the vocabulary in a way that is independent of the underlying structure (BPE, SentencePiece...).

Dc

Tokenizer

Tokenizer

i A tokenizer is consistent of the following pieces: _

A vocab.json, which maps subwords into integers

e "groupon": 14531, "\u0120jokes": 14532, "\u0120Benjamin": 14533,
"\uO120Random": 14534, "frame": 14535, "\u0120Lions": 14536,
"\u0120highlighted": 14537,

Pre-tokenization

o 95
> 1-

Given a sentence like “Alice likes to swim, so she asks Pre-tokenization split the sentence into words
BoBBB to go fishing with her and then she jumps into according to a prescribed list of special symbols.
the water.”

Typically, those are space + punctuations
- Period (.)
- Comma (,)

- Question mark (?)

Pre-tokenization

e,

Given input sentence “Alice likes to swim, so she asks BoBBB to go fishing with

her and then she jumps into the water.”

(1). Split according to punctuation. So it
becomes

(2). Split each chunk according to space,
but merge the space with the word after
it. So the first chunk is splitted to

[Alice likes to swim] [,] [so she asks BoBBB to go
fishing with her and then she jumps into the
water] [.]

[Alice], [\u0120likes], [\u0120to], [\u0120swin]

\u0120 represents space.

Pre-tokenization

- Split each chunk according Special Notice: If we have
— to space, but merge the "1 things like [\u0120][,], we
® 0 0

space with the word after it. — L also merge it to [\u0120,]

Tokenization

“Alice likes to swim, so she asks BoBBB to go fishing with her and then she jumps into the
water.” -- After pretokenization, we get a list

[Alice], [\u0120likes], [\u0120to], [\u0120swin], [,] [so], [\u0120she]...

For each word in the list, we find the longest subword in the vocab.json that matches the
prefix of the word.

e “Alice”: 44484, “\u0120likes”: 7832, “\u0120to”: 284, ...

e So we map them to [44484, 7832, 284, ...]

e “\u0120BoBBB” is not in the vocab.json. Longest prefix is “\u0120Bo”: 3248

e Then we have “BBB”, “BBB” is not in the vocab.json, longest prefix is “BB”: 15199, then we have “B”: 33
e So we map “\u0120BoBBB” to [3248, 15199, 33]

Tokenization

* GPT2-Tokenizer(“Alice likes to swim, so she asks BoBBB to go fishing
with her and then she jumps into the water”) = [44484 7832 284
9422 11523 673 7893 3248 15199 33 284 467 12478 351 607 290
788 673 18045 656 262 1660]

Vocab.json

e Minmize the length of the tokenization of the corpus, subject to the vocab size <= M.

Byte-Pair Encoding

* One of the algorithm to find the vocab.json given a training corpus
* Maintain a list of subwords.
* Initially, the list of subwords are all the bytes (chars like a, b, ¢, d, ...)

* Loop:

* Merge the two subwords that are most likely to appear next
to each other in the corpus into one and create a new
subword. Until the total number of subwords = M.

* [you][would][like][to][take][some][cake][or][pick][some][meat]

* Mergek, e to ke

* Mergem, eto me

* Merge a, ke to ake

* Merge o, me to ome

After tokenization

5y After tokenization, we map a sentence into a list of integers like [3260
1 11241 1634 11 356 3975 257 6827 656 257 1351 286 37014 220]

+ Each integer is called a token.
s

How do we train a language model on a giant list of integers (>1T
-/ tokens)?

o o
.......

raining objective

How do we train a language model on a
giant list of integers (>1T tokens)?

Step 1: Split the giant list into chunks of
length context_length (typically

512/1024/2048/4096/8192/16K/32K/128K).

Over each chunk, there are two objectives
we cah use:

e Mask Language Modeling Objective.
e Autoregressive Language Modeling Objective.

Mask Language

Modeling Objective

Given a chunk like X =[3260 11241 1634 11 356 3975
257 6827 656 257 1351 286 37014 220]

Randomly mask 15% of the tokens to <mask>, so we
get things like

X =[3260 11241 1634 <mask> 356 3975 257 6827
656 <mask> 1351 286 37014 220]

Taking X’ as the input, the objective is to predict the
label, which is X.

Alice is a <mask> student, she always scores 0 on her
exams. On the other <mask>, Bob is a good <mask>.

* The more commonly used training objective
is Autoregressive Language Modeling
Objective.

* Given a list of integers X of length

Autoregressive context_length, for every i €
Language [context_length — 1], we want to predict
I\/Iodeling X[i + 1] given X[O0:i+1]
Objective * Alice is a horrible student, she always scores
_ (should predict something corresponding
to a low score). '

* In this way, we can train a generative model
like GPT-4.

o

Training Transformer Based Models

So the input is a list of integers, and the label is another (list of)
Integers.

How do we use a transformer model on this task?

Labels: (List of) Integers — This is fine, we can use cross entropy
loss.

Input: List of integers.

Embedding Layer

V Given a list of integers of length L.

p =i

We first map it into a list of one-hot vectors, each of dimension vocab_size.

= Then, we apply an (trainable) A linear function of vocab_size -> emb_dim to
embedding layer. map each vector to emb_dim.

)

So we get L vectors, each of emb_dim.

Positional Encoding

So we get L vectors, each of
emb_dim.

How can we keep the positional
information of those vectors?

“Alice likes Bob” is totally
different from “Bob likes Alice”.

We will use the so-called
positional encoding.

Absolute Positional Encoding

* Given a list of L vectors x4, x5, ..., x;, each of dimension emb_dim.

* For each |, we add p; (trainable positional encoding vector) to x; and
get another vector. Then we apply Layer Normalization on each
vector.

e We feed the new list of vectors to the transformer.

Rotary Positional Encoding

* Given a list of L vectors x4, x5, ..., x;, each x is of dimension emb_dim

* Rotary positional encoding (not trainable) maps each x; to rot(x;) =
X
« x;[2k] = x;[2k] cos(Ox 1) — x;[2k + 1] sin(61)
e x;[2k + 1] = x;[2k] sin(6; 1) + x;[2k + 1] cos(6;1)
* If we view z;, = x;[2k] + ix;[2k + 1], then z};, = 7 e'Oxt,
* Forevery k € |d,,:], where 2d,,; is the rotary embedding dimension
(typically emb_dim//2).

1

Rotary Positional Encoding

* Z|p = Zl,kelgkl

* We know that < zj , 2y, > =z 2, e 1"
* We apply Rotary Positional Encoding to the MHA layer directly.

* Instead of computing {< Qx;, Kxpr >}l 'e[context_length] for the

softmax, we compute {< rot(Qx;), TOt(le’) >}l 'e[context_length]

* Key observation: If x; = xp, X;4p = Xp4p, then (shift invariant)
e < rot(Qxl),Tot(Kpr) > =<rot(Qxp), rot(Kxp4p) >

	10417/10617
	VIT Large (the original vision transformer)
	We learnt a transformer model
	From Image to Language
	We learnt a transformer model
	Tokenizer
	Tokenizer
	Tokenizer
	Pre-tokenization
	Pre-tokenization
	Pre-tokenization
	Tokenization
	Tokenization
	Vocab.json
	Byte-Pair Encoding
	After tokenization
	Training objective
	Mask Language Modeling Objective
	Autoregressive Language Modeling Objective
	Training Transformer Based Models
	Embedding Layer
	Positional Encoding
	Absolute Positional Encoding
	Rotary Positional Encoding
	Rotary Positional Encoding

