
10417/10617
Language Modeling Part I: Tokenization, Training Objective and

Positional Encodings

VIT Large (the original
vision transformer)

• Convert input image to 16x16 total
patches (total 256 vectors).

• For each patch, apply an embedding
layer to map it to dimension 1024.

• Apply 24 transformer blocks, each
transformer block has a one-hidden-
layer MLP of size 1024 -> 4096 -> 1024.

• Each transformer block as a Multi-
Head Attention layer with 16 heads.

• Total 307M parameters (very small for a
transformer).

We learnt a
transformer model

• Step 1: Map the input to a sequence of vectors.
• Step 2: Go through an embedding layer that

changes the dimension of the vectors.
• Step 3: Apply MHA (Multi-Head Attention) +

Residual Link
• Step 4: Apply MLP + Residual Link
• Step 5: Repeat 3, 4 for multiple times.
• Step 6: Apply another layer that maps the final

embedding layer to the output.

From Image to Language

For vision application, we can cut it into patches to get a sequence of input vectors.

The training objective is classification/reconstruction.

What about language?

Given a sentence “Alice likes to swim, so she asks Bob to
go fishing with her and then she jumps into the water.”

How to break it into a sequence of vectors?

What is the training objective?

We learnt a transformer model

Today, we focus on
Steps 1 and 6 for
language modeling.
• Step 1: Map the input to

a sequence of vectors.
• Step 6: Apply another

layer that maps the final
embedding layer to the
output.

Step 1: How to
map the input
sentence to a
sequence of
vectors.
• Tokenizer +

Positional
Encoding.

Step 6: What is
the training
objective?

Tokenizer

Tokenizer

Tokenizer maps an input sentence (of any length, in any language) to a list (the
length may vary depending on the sentence).

Example: GPT2-Tokenizer(“Alice likes to swim, so she asks BoBBB to go fishing with
her and then she jumps into the water”) = [44484 7832 284 9422 11 523 673 7893
3248 15199 33 284 467 12478 351 607 290 788 673 18045 656 262 1660]

How are these numbers computed?

Tokenizer

A tokenizer is consistent of the following pieces:

• "groupon": 14531, "\u0120jokes": 14532, "\u0120Benjamin": 14533,
"\u0120Random": 14534, "frame": 14535, "\u0120Lions": 14536,
"\u0120highlighted": 14537, ….

A vocab.json, which maps subwords into integers

A pre-tokenization rule.

Pre-tokenization

Given a sentence like “Alice likes to swim, so she asks
BoBBB to go fishing with her and then she jumps into
the water.”

Pre-tokenization split the sentence into words
according to a prescribed list of special symbols.

Typically, those are space + punctuations
- Period (.)
- Comma (,)
- Question mark (?)
…

Pre-tokenization

Given input sentence “Alice likes to swim, so she asks BoBBB to go fishing with
her and then she jumps into the water.”

(1). Split according to punctuation. So it
becomes

[Alice likes to swim] [,] [so she asks BoBBB to go
fishing with her and then she jumps into the
water] [.]

(2). Split each chunk according to space,
but merge the space with the word after
it. So the first chunk is splitted to

[Alice], [\u0120likes], [\u0120to], [\u0120swin]

\u0120 represents space.

Pre-tokenization

Split each chunk according
to space, but merge the
space with the word after it.

Special Notice: If we have
things like [\u0120][,], we
also merge it to [\u0120,]

Tokenization

“Alice likes to swim, so she asks BoBBB to go fishing with her and then she jumps into the
water.” -- After pretokenization, we get a list

[Alice], [\u0120likes], [\u0120to], [\u0120swin], [,] [so], [\u0120she]…

For each word in the list, we find the longest subword in the vocab.json that matches the
prefix of the word.

• “Alice”: 44484, “\u0120likes”: 7832, “\u0120to”: 284, …
• So we map them to [44484, 7832, 284, …]
• “\u0120BoBBB” is not in the vocab.json. Longest prefix is “\u0120Bo”: 3248
• Then we have “BBB”, “BBB” is not in the vocab.json, longest prefix is “BB”: 15199, then we have “B”: 33
• So we map “\u0120BoBBB” to [3248, 15199, 33]

Tokenization

• GPT2-Tokenizer(“Alice likes to swim, so she asks BoBBB to go fishing
with her and then she jumps into the water”) = [44484 7832 284
9422 11 523 673 7893 3248 15199 33 284 467 12478 351 607 290
788 673 18045 656 262 1660]

Vocab.json

How was the vocab.json constructed?

On one hand, we want the prefix to be as long as possible, so we tokenize each chunk
into fewer tokens.

On the other hand, we don’t want the vocab size to be too large (one token per every
possible chunk, even things like [%WIUORQNCXKZJYTQ%VHKSJVASTXN%])

Given a training corpus, we want to solve the following problem:

• Minmize the length of the tokenization of the corpus, subject to the vocab size <= M.

Byte-Pair Encoding

• One of the algorithm to find the vocab.json given a training corpus

• Maintain a list of subwords.

• Initially, the list of subwords are all the bytes (chars like a, b, c, d, …)

• Loop:
• Merge the two subwords that are most likely to appear next

to each other in the corpus into one and create a new
subword. Until the total number of subwords = M.

• [you][would][like][to][take][some][cake][or][pick][some][meat]
• Merge k, e to ke
• Merge m, e to me
• Merge a, ke to ake
• Merge o, me to ome
• …

After tokenization

After tokenization, we map a sentence into a list of integers like [3260
11241 1634 11 356 3975 257 6827 656 257 1351 286 37014 220]

Each integer is called a token.

How do we train a language model on a giant list of integers (>1T
tokens)?

Tr
ai

ni
ng

 o
bj

ec
tiv

e
How do we train a language model on a
giant list of integers (>1T tokens)?

Step 1: Split the giant list into chunks of
length context_length (typically
512/1024/2048/4096/8192/16K/32K/128K).

Over each chunk, there are two objectives
we can use:

• Mask Language Modeling Objective.
• Autoregressive Language Modeling Objective.

M
as

k
La

ng
ua

ge

M
od

el
in

g
O

bj
ec

tiv
e

Given a chunk like X = [3260 11241 1634 11 356 3975
257 6827 656 257 1351 286 37014 220]

Randomly mask 15% of the tokens to <mask>, so we
get things like

X’ = [3260 11241 1634 <mask> 356 3975 257 6827
656 <mask> 1351 286 37014 220]

Taking X’ as the input, the objective is to predict the
label, which is X.

Alice is a <mask> student, she always scores 0 on her
exams. On the other <mask>, Bob is a good <mask>.

Autoregressive
Language
Modeling
Objective

• The more commonly used training objective
is Autoregressive Language Modeling
Objective.

• Given a list of integers X of length
context_length, for every 𝑖𝑖 ∈
[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐𝑙 − 1], we want to predict
X[i + 1] given X[0:i+1]

• Alice is a horrible student, she always scores
_ (should predict something corresponding
to a low score).

• In this way, we can train a generative model
like GPT-4.

Training Transformer Based Models

So the input is a list of integers, and the label is another (list of)
integers.

How do we use a transformer model on this task?

Labels: (List of) Integers – This is fine, we can use cross entropy
loss.

Input: List of integers.

Embedding Layer

Given a list of integers of length L.

We first map it into a list of one-hot vectors, each of dimension vocab_size.

Then, we apply an (trainable)
embedding layer.

A linear function of vocab_size -> emb_dim to
map each vector to emb_dim.

So we get L vectors, each of emb_dim.

Positional Encoding

So we get L vectors, each of
emb_dim.

How can we keep the positional
information of those vectors?

“Alice likes Bob” is totally
different from “Bob likes Alice”.

We will use the so-called
positional encoding.

Absolute Positional Encoding

• Given a list of L vectors 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐿𝐿, each of dimension emb_dim.
• For each l, we add 𝑝𝑝𝑙𝑙 (trainable positional encoding vector) to 𝑐𝑐𝑙𝑙 and

get another vector. Then we apply Layer Normalization on each
vector.

• We feed the new list of vectors to the transformer.

Rotary Positional Encoding

• Given a list of L vectors 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐿𝐿, each x is of dimension emb_dim
• Rotary positional encoding (not trainable) maps each 𝑐𝑐𝑙𝑙 to 𝑟𝑟𝑐𝑐𝑐𝑐(𝑐𝑐𝑙𝑙) =
𝑐𝑐𝑙𝑙′ :

• 𝑐𝑐𝑙𝑙′ 2𝑘𝑘 = 𝑐𝑐𝑙𝑙 2𝑘𝑘 cos(𝜃𝜃𝑘𝑘𝑙𝑙) − 𝑐𝑐𝑙𝑙 2𝑘𝑘 + 1 sin(𝜃𝜃𝑘𝑘𝑙𝑙)
• 𝑐𝑐𝑙𝑙′ 2𝑘𝑘 + 1 = 𝑐𝑐𝑙𝑙 2𝑘𝑘 sin(𝜃𝜃𝑘𝑘𝑙𝑙) + 𝑐𝑐𝑙𝑙 2𝑘𝑘 + 1 cos(𝜃𝜃𝑘𝑘𝑙𝑙)
• If we view 𝑧𝑧𝑙𝑙,𝑘𝑘 = 𝑐𝑐𝑙𝑙 2𝑘𝑘 + 𝑖𝑖𝑐𝑐𝑙𝑙[2𝑘𝑘 + 1], then 𝑧𝑧𝑙𝑙,𝑘𝑘′ = 𝑧𝑧𝑙𝑙,𝑘𝑘𝑐𝑐𝑖𝑖𝜃𝜃𝑘𝑘𝑙𝑙.
• For every 𝑘𝑘 ∈ [𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟], where 2𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 is the rotary embedding dimension

(typically emb_dim//2).

• Where 𝜃𝜃𝑘𝑘 = 1
10000−𝑘𝑘/𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟

.

Rotary Positional Encoding

• 𝑧𝑧𝑙𝑙,𝑘𝑘′ = 𝑧𝑧𝑙𝑙,𝑘𝑘𝑐𝑐𝑖𝑖𝜃𝜃𝑘𝑘𝑙𝑙

• We know that < 𝑧𝑧𝑙𝑙,𝑘𝑘
′ , 𝑧𝑧𝑙𝑙′,𝑘𝑘

′ > = 𝑧𝑧𝑙𝑙,𝑘𝑘 𝑧𝑧𝑙𝑙′,𝑘𝑘𝑐𝑐𝑖𝑖𝜃𝜃𝑘𝑘(𝑙𝑙 −𝑙𝑙′)

• We apply Rotary Positional Encoding to the MHA layer directly.
• Instead of computing < 𝑄𝑄𝑐𝑐𝑙𝑙 ,𝐾𝐾𝑐𝑐𝑙𝑙′ > 𝑙𝑙′∈[𝑐𝑐𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟_𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝑟𝑟𝑙] for the

softmax, we compute < 𝑟𝑟𝑐𝑐𝑐𝑐(𝑄𝑄𝑐𝑐𝑙𝑙), 𝑟𝑟𝑐𝑐𝑐𝑐(𝐾𝐾𝑐𝑐𝑙𝑙′) > 𝑙𝑙′∈[𝑐𝑐𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟_𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝑟𝑟𝑙]

• Key observation: If 𝑐𝑐𝑙𝑙 = 𝑐𝑐𝑙, 𝑐𝑐𝑙𝑙+𝑝𝑝 = 𝑐𝑐𝑙+𝑝𝑝, then (shift invariant)
• < 𝑟𝑟𝑐𝑐𝑐𝑐 𝑄𝑄𝑐𝑐𝑙𝑙 , 𝑟𝑟𝑐𝑐𝑐𝑐 𝐾𝐾𝑐𝑐𝑙𝑙+𝑝𝑝 > =< 𝑟𝑟𝑐𝑐𝑐𝑐(𝑄𝑄𝑐𝑐𝑙), 𝑟𝑟𝑐𝑐𝑐𝑐(𝐾𝐾𝑐𝑐𝑙+𝑝𝑝) >

	10417/10617
	VIT Large (the original vision transformer)
	We learnt a transformer model
	From Image to Language
	We learnt a transformer model
	Tokenizer
	Tokenizer
	Tokenizer
	Pre-tokenization
	Pre-tokenization
	Pre-tokenization
	Tokenization
	Tokenization
	Vocab.json
	Byte-Pair Encoding
	After tokenization
	Training objective
	Mask Language Modeling Objective
	Autoregressive Language Modeling Objective
	Training Transformer Based Models
	Embedding Layer
	Positional Encoding
	Absolute Positional Encoding
	Rotary Positional Encoding
	Rotary Positional Encoding

