
10417/617
ATTENTION MASK, FLASH ATTENTION, MULTI-QUERY ATTENTION

Multi-Head
Attention

Layer

 The most fundamental layer in the transformer:
Multi-head attention.

 Given vectors 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛, each in 𝑅𝑅𝑑𝑑, a multi-
head attention layer is defined as:

 𝑣𝑣𝑖𝑖′ = 𝐶𝐶 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉𝑟𝑟𝑇𝑇 ∑𝑗𝑗 𝛼𝛼𝑖𝑖,𝑗𝑗𝑟𝑟 𝑣𝑣𝑗𝑗
𝑟𝑟∈ 𝑑𝑑/𝑚𝑚

+ 𝑏𝑏

 Where 𝛼𝛼𝑖𝑖,𝑗𝑗𝑟𝑟 𝑗𝑗∈[𝑛𝑛]
= 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠 𝑣𝑣𝑖𝑖𝑇𝑇𝑄𝑄𝑟𝑟𝐾𝐾𝑟𝑟𝑇𝑇𝑣𝑣𝑗𝑗 + 𝑝𝑝𝑖𝑖,𝑗𝑗𝑟𝑟 𝑗𝑗∈[𝑛𝑛]

 Here, C is a 𝑑𝑑 × 𝑑𝑑 trainable matrix.
 Each 𝑣𝑣𝑖𝑖 looks for the “most similar 𝑣𝑣𝑗𝑗 , according

to [d/m] many projection matrices 𝑄𝑄𝑟𝑟 and 𝐾𝐾𝑟𝑟.

Transformer Architecture

 A (post-layernorm) transformer block is defined as:

 Given input 𝑊𝑊 = 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 , each 𝑣𝑣𝑖𝑖 in 𝑅𝑅𝑑𝑑.

 (1). Apply Multi-Head Attention (input dimension d, output dimension d) on 𝑊𝑊 to get 𝑉𝑉(1) = 𝑣𝑣1
(1), 𝑣𝑣2

(1), … , 𝑣𝑣𝑛𝑛
(1).

 (2). Apply layer-norm on each of the 𝑣𝑣𝑖𝑖
(1)

 to get 𝑣𝑣𝑖𝑖
(2).

 (3). Apply residual link: 𝑣𝑣𝑖𝑖
(3) = 𝑣𝑣𝑖𝑖

(2) + 𝑣𝑣𝑖𝑖 .

 (4). Apply a one hidden layer MLP h (input dimension d, output dimension d) on each 𝑣𝑣𝑖𝑖
(3) to get 𝑣𝑣𝑖𝑖

(4) =
ℎ(𝑣𝑣𝑖𝑖

(3)) (all the 𝑣𝑣𝑖𝑖′′′ in the uses the same h per layer, different h for different layers).

 (5). Apply layer-norm on each of the 𝑣𝑣𝑖𝑖
(4)

 to get 𝑣𝑣𝑖𝑖
(5).

 (6). Apply residual link: 𝑣𝑣𝑖𝑖
(6) = 𝑣𝑣𝑖𝑖

(5) + 𝑣𝑣𝑖𝑖
(3).

 The output 𝑉𝑉(6) = 𝑣𝑣1
(6),𝑣𝑣2

(6), … , 𝑣𝑣𝑛𝑛
(6)

, each 𝑣𝑣𝑖𝑖
(6) in 𝑅𝑅𝑑𝑑.

Transformer Architecture

 A (pre-layernorm) transformer block is defined as:

 Given input W = 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 , each 𝑣𝑣𝑖𝑖 in 𝑅𝑅𝑑𝑑.

 (1). Apply layer-norm on each of the 𝑣𝑣𝑖𝑖 to get 𝑣𝑣𝑖𝑖
(1).

 (2). Apply Multi-Head Attention on 𝑉𝑉(1) to get 𝑉𝑉(2) = 𝑣𝑣1
(2),𝑣𝑣2

(2), … , 𝑣𝑣𝑛𝑛
(2).

 (3). Apply residual link: 𝑣𝑣𝑖𝑖
(3) = 𝑣𝑣𝑖𝑖

(2) + 𝑣𝑣𝑖𝑖.

 (4). Apply layer-norm on each of the 𝑣𝑣𝑖𝑖
(3) to get 𝑣𝑣𝑖𝑖

(4).

 (5). Apply a one hidden layer MLP h on each 𝑣𝑣𝑖𝑖
(4) to get 𝑣𝑣𝑖𝑖

(5) = ℎ(𝑣𝑣𝑖𝑖
(4)) (all the 𝑣𝑣𝑖𝑖′′′ in the

uses the same h per layer, different h for different layers).

 (6). Apply residual link: 𝑣𝑣𝑖𝑖
(6) = 𝑣𝑣𝑖𝑖

(5) + 𝑣𝑣𝑖𝑖
(3).

Computation
Time of

Transformer
Block

 A transformer block = MHA (m heads) + MLP.

 Assuming the context length is n and the
embedding dimension is d.

 Forward/Backward time:
 𝑐𝑐𝑑𝑑2 𝑠𝑠𝑚𝑚𝑝𝑝 + (𝑐𝑐𝑑𝑑2 + 𝑐𝑐2𝑑𝑑) (𝑀𝑀𝑀𝑀𝑀𝑀)

 (Forward) Backward Memory:
 𝑐𝑐𝑑𝑑 𝑠𝑠𝑚𝑚𝑝𝑝 + (𝑐𝑐𝑑𝑑 + 𝑐𝑐2𝑠𝑠) (𝑀𝑀𝑀𝑀𝑀𝑀)

Reducing Memory Usage of Attention
 Main Memory Usage:
 For each attention head, we need to store the 𝑐𝑐 × 𝑐𝑐 attention matrix:

 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠 𝑣𝑣𝑖𝑖𝑇𝑇𝑄𝑄𝑟𝑟𝐾𝐾𝑟𝑟𝑇𝑇𝑣𝑣𝑗𝑗 + 𝑝𝑝𝑖𝑖,𝑗𝑗𝑟𝑟 𝑗𝑗∈ 𝑛𝑛 𝑖𝑖∈[𝑛𝑛]

 Let’s just consider one row:

 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠 𝑣𝑣𝑖𝑖𝑇𝑇𝑄𝑄𝑟𝑟𝐾𝐾𝑟𝑟𝑇𝑇𝑣𝑣𝑗𝑗 + 𝑝𝑝𝑖𝑖,𝑗𝑗𝑟𝑟 𝑗𝑗∈ 𝑛𝑛

 Key idea of Flash-Attention:
 We store 𝐾𝐾𝑟𝑟𝑇𝑇𝑣𝑣𝑗𝑗 ,𝑄𝑄𝑟𝑟𝑇𝑇𝑣𝑣𝑗𝑗 for every r and j, this takes memory 𝑑𝑑 × 𝑐𝑐.

 We do not store the full softmax matrix, we will “compute them on the fly” to
save memory.

Softmax Recomputation

 Consider 𝑂𝑂 = ∑𝑖𝑖∈[𝑛𝑛]𝑦𝑦𝑖𝑖 × 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠 𝑠𝑠 𝑖𝑖

 Where for each 𝑠𝑠𝑖𝑖 ,𝑦𝑦𝑖𝑖, we need computation time d/m to retrieve it.

 Stupid-Attention computation:
 For i in range(n):

 Compute 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠_𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠_𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 + exp(𝑠𝑠𝑖𝑖).

 Compute 𝑂𝑂 = 𝑂𝑂 + 𝑦𝑦𝑖𝑖 exp(𝑠𝑠𝑖𝑖)

 Return O/norm_factor

 This only requires memory O(M), where M = d/m is the dimension of 𝑦𝑦𝑖𝑖

From Stupid Attention to Flash Attention
 Why is Stupid Attention Stupid?
 Floating Point accuracy. We can not compute ∑exp(𝑠𝑠𝑖𝑖) accurately!

No such accuracy.
 Stupid Attention V2:

 Go through i, compute the max of 𝑠𝑠𝑖𝑖 as m(x)

 For i in range(n):
 Compute 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠_𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠_𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 + exp(𝑠𝑠𝑖𝑖 −𝑠𝑠(𝑠𝑠)).

 Compute 𝑂𝑂 = 𝑂𝑂 + 𝑦𝑦𝑖𝑖 exp(𝑠𝑠𝑖𝑖 −𝑠𝑠(𝑠𝑠))

 Return O/norm_factor

 But then we need to compute 𝑠𝑠𝑖𝑖 twice, unless we store it in the
memory…

From Stupid Attention V2 to Flash
Attention

 Stupid Attention V3 is an upgrade of stupid attention v2, where we only
compute 𝑠𝑠𝑖𝑖 once and maintain the correct floating-point accuracy.

 For i in range(n):
 Compute 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠 = max(𝑠𝑠 𝑠𝑠 , 𝑠𝑠𝑖𝑖)

 Compute 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠 = exp 𝑠𝑠 𝑠𝑠 −𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠 + exp 𝑠𝑠𝑖𝑖 −𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠 .

 Compute 𝑂𝑂 = exp(𝑠𝑠 𝑠𝑠 −𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛(𝑠𝑠))𝑂𝑂 + 𝑦𝑦𝑖𝑖 exp(𝑠𝑠𝑖𝑖 −𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛(𝑠𝑠))

 Update 𝑠𝑠(𝑠𝑠) = 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛(𝑠𝑠)

 Output O/norm.

From Stupid
Attention V3
to Flash
Attention

Now the memory usage is good.

•Cuda operates on the so-called “Thread Block”, so the computation is very
fast for operations of “certain sizes”.

Main problem: For i in range(n).

•Vector of size M = d/m per i. This is typically smaller than the “certain sizes”
when m is large.

In stupid attention v3, the computation inside for loop is:

So we need to do some chunking…

Flash Attention
 Flash attention is a little bit more involved than the previous slides.
 It divides the computation in chunks of R
 For i in range(n//R):

 Compute the softmax for x[iR:iR +R] using the fastest way, which uses memory R.
Then compute
 𝑂𝑂𝑖𝑖 = ∑𝑗𝑗∈[𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖+𝑖𝑖) 𝑦𝑦𝑗𝑗 × 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠 𝑠𝑠[𝑖𝑖𝑅𝑅: 𝑖𝑖𝑅𝑅 + 𝑅𝑅] 𝑗𝑗 (only store this 𝑂𝑂𝑖𝑖 in SRAM).

 Store the max of x[j] for j in [iR, iR + R) in memory as m[i].
 Store the normalization factor of the softmax (after subtracting the max) of 𝑠𝑠[𝑖𝑖𝑅𝑅: 𝑖𝑖𝑅𝑅 +

𝑅𝑅] in memory as norm[i].
 Update 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠 = max(𝑠𝑠 𝑠𝑠 ,𝑠𝑠[𝑖𝑖])

 Update 𝑂𝑂 = 𝑂𝑂 exp 𝑠𝑠 𝑠𝑠 −𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠 + exp 𝑠𝑠 𝑖𝑖 − 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠 𝑂𝑂𝑖𝑖 × 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠[𝑖𝑖]

 Update 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠 = exp 𝑠𝑠 𝑠𝑠 −𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠 + norm i × exp 𝑠𝑠[𝑖𝑖] −𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠 .

 Update 𝑠𝑠(𝑠𝑠) = 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛(𝑠𝑠)

Autoregressive
Training

Can we do it more efficiently in computation time of a single
X[0:context_length]?

Naïve implementation: Treat X[0:i] as a separate input with label X[i].

Total computation time: context_length * computation time
on input X[0:context_length]

Recall in the autoregressive training objective

Given X[0:i], we want to predict X[i], for every i in
[context_length]

Attention Mask

 The core of MHA is the soft-max
attention score:

 𝛼𝛼𝑖𝑖,𝑗𝑗𝑟𝑟 𝑗𝑗∈[𝑛𝑛]
= 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠 𝑣𝑣𝑖𝑖𝑇𝑇𝑄𝑄𝑟𝑟𝐾𝐾𝑟𝑟𝑇𝑇𝑣𝑣𝑗𝑗 + 𝑝𝑝𝑖𝑖,𝑗𝑗𝑟𝑟 𝑗𝑗∈[𝑛𝑛]

 Key observation: We can set 𝑝𝑝𝑖𝑖,𝑗𝑗𝑟𝑟 = −∞ if
and only if i < j (attention mask).

 In this way, the new value
 𝑣𝑣𝑖𝑖′ = 𝐶𝐶 ×
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉𝑟𝑟𝑇𝑇 ∑𝑗𝑗 𝛼𝛼𝑖𝑖,𝑗𝑗𝑟𝑟 𝑣𝑣𝑗𝑗

𝑟𝑟∈ 𝑑𝑑/𝑚𝑚
+ 𝑏𝑏

 𝑣𝑣𝑖𝑖′ only depends on 𝑣𝑣𝑗𝑗 for 𝑗𝑗 ≤ 𝑖𝑖 .

Attention:
Visulization

Attention:
Visulization

Can we train a GPT-4 now?

 So we have learned the transformer architecture, how to tokenize our
dataset, how to set the training loss, and how to use attention masking.

 Can we train a GPT-4 model now assuming we have enough computing
(30K A100 GPUs) and enough data (100T tokens)?

 Theoretically, we can, but there are some further techniques GPT-4 uses to
speed up inference/training.

Training with Mixture of Experts

 Mixture of Expert is an architecture that speeds up training by a crazy
factor.

 With it, you can train a 100B parameter model as fast as a 2B one.

Mixture of Experts

 Let’s look at an article:
 A black hole is a region of spacetime where gravity is so strong that nothing,

including light and other electromagnetic waves, has enough energy to escape
it.[2] The theory of general relativity predicts that a sufficiently compact mass can
deform spacetime to form a black hole.[3][4] The boundary of no escape is called
the event horizon. Although it has a great effect on the fate and circumstances of an
object crossing it, it has no locally detectable features according to general
relativity.[5] In many ways, a black hole acts like an ideal black body, as it reflects no
light.[6][7] Moreover, quantum field theory in curved spacetime predicts that event
horizons emit Hawking radiation, with the same spectrum as a black body of
a temperature inversely proportional to its mass. This temperature is of the order of
billionths of a kelvin for stellar black holes, making it essentially impossible to observe
directly.

https://en.wikipedia.org/wiki/Spacetime
https://en.wikipedia.org/wiki/Gravity
https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Electromagnetic_radiation
https://en.wikipedia.org/wiki/Black_hole#cite_note-2
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Black_hole#cite_note-wald_1997-3
https://en.wikipedia.org/wiki/Black_hole#cite_note-NYT-20150608-4
https://en.wikipedia.org/wiki/Boundary_(topology)
https://en.wikipedia.org/wiki/Event_horizon
https://en.wikipedia.org/wiki/Black_hole#cite_note-HamiltonA-5
https://en.wikipedia.org/wiki/Black_body
https://en.wikipedia.org/wiki/Black_hole#cite_note-6
https://en.wikipedia.org/wiki/Black_hole#cite_note-7
https://en.wikipedia.org/wiki/Quantum_field_theory_in_curved_spacetime
https://en.wikipedia.org/wiki/Hawking_radiation
https://en.wikipedia.org/wiki/Thermal_radiation
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Kelvin
https://en.wikipedia.org/wiki/Stellar_black_hole

Knowledge versus Reasoning

 To do the next token prediction in the article, most of the time we are
extracting knowledge from the model.

 (Deep) Reasoning is very rare in the training data.

 Key observation:
 Knowledge is sparse!

Knowledge Storage in Transformer

 Knowledge is conjectured to be stored in the MLP layer of a transformer.

 Take in the embedding of some entities like (Pairs, Captial).

 We extract the knowledge from the MLP (France).

 It’s like looking up in a dictionary.
 We should do some indexing!

 We look for knowledge that starts with “P” and only look for Pairs in that chunk of
knowledge.

Indexing with MoE

 A (top-1 routing) Mixture of Expert (MoE) layer with k experts is defined as:

 We have k trainable MLPs 𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑘𝑘, each takes input of dimension d
and output a vector of dimension d.

 We have a trainable router (indexing) R: d -> k, a linear function.

 Given input x, we first compute R x = 𝑐𝑐𝑛𝑛𝑎𝑎𝑠𝑠𝑐𝑐𝑠𝑠 𝑅𝑅𝑠𝑠 𝑖𝑖 𝑖𝑖∈[𝑘𝑘].

 We output 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠 𝑅𝑅𝑠𝑠 𝑖𝑖(𝑥𝑥) × 𝑀𝑀𝑖𝑖 𝑥𝑥 (𝑠𝑠).

Inference

Given a prompt s (text), we can

Tokenize the
prompt s into a list

of integers S.

* Feed S into the
autoregressive

language model,
and obtain its

prediction 𝑆𝑆𝑝𝑝𝑟𝑟𝑛𝑛𝑑𝑑.

Update S =
concatenate(S,

𝑆𝑆𝑝𝑝𝑟𝑟𝑛𝑛𝑑𝑑).
Repeat Step *.

After autoregressive training, we
can use the autoregressive

language model to generate
texts.

Multi-Query Attention

 Optimized for inference speed.
 Time-consuming step for inference:

 Feed S into the autoregressive language
model, and obtain its prediction 𝑆𝑆𝑝𝑝𝑟𝑟𝑛𝑛𝑑𝑑.

 We do not want to recompute model(S)
every time we update S.

 Key observation: Caching.
 We can cache the past 𝐾𝐾𝑟𝑟𝑇𝑇𝑣𝑣𝑗𝑗 and

𝑉𝑉𝑟𝑟𝑇𝑇𝑣𝑣𝑗𝑗 values for all j < len(S), and no need
to recompute them.

 However, this requires us to cache
 𝑑𝑑 × 𝑚𝑚𝑐𝑐𝑐𝑐(𝑆𝑆) many values.

Multi-Query Attention
 Multi-query attention:

 Instead of using 𝛼𝛼𝑖𝑖,𝑗𝑗𝑟𝑟 𝑗𝑗∈[𝑛𝑛]
= 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠�

�

𝑣𝑣𝑖𝑖𝑇𝑇𝑄𝑄𝑟𝑟𝐾𝐾𝑟𝑟𝑇𝑇𝑣𝑣𝑗𝑗 +

𝑝𝑝𝑖𝑖,𝑗𝑗𝑟𝑟 𝑗𝑗∈[𝑛𝑛]

 𝑣𝑣𝑖𝑖′ = 𝐶𝐶 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉𝑟𝑟𝑇𝑇 ∑𝑗𝑗 𝛼𝛼𝑖𝑖,𝑗𝑗𝑟𝑟 𝑣𝑣𝑗𝑗 𝑟𝑟∈ 𝑑𝑑/𝑚𝑚
+ 𝑏𝑏

 We now use 𝛼𝛼𝑖𝑖,𝑗𝑗𝑟𝑟 𝑗𝑗∈[𝑛𝑛]
= 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠�

�

𝑣𝑣𝑖𝑖𝑇𝑇𝑄𝑄𝑟𝑟𝐾𝐾𝑇𝑇𝑣𝑣𝑗𝑗 +

𝑝𝑝𝑖𝑖,𝑗𝑗𝑟𝑟 𝑗𝑗∈[𝑛𝑛]

 𝑣𝑣𝑖𝑖′ = 𝐶𝐶 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉𝑇𝑇 ∑𝑗𝑗 𝛼𝛼𝑖𝑖,𝑗𝑗𝑟𝑟 𝑣𝑣𝑗𝑗 𝑟𝑟∈ 𝑑𝑑/𝑚𝑚
+ 𝑏𝑏

 So every head shares the same K, V
 (of dimension embed_dim x head_dim).

	10417/617
	Multi-Head Attention Layer
	Transformer Architecture
	Transformer Architecture
	Computation Time of Transformer Block
	Reducing Memory Usage of Attention
	Softmax Recomputation
	From Stupid Attention to Flash Attention
	From Stupid Attention V2 to Flash Attention
	From Stupid Attention V3 to Flash Attention
	Flash Attention
	Autoregressive Training
	Attention Mask
	Attention: Visulization
	Attention: Visulization
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Can we train a GPT-4 now?
	Training with Mixture of Experts
	Mixture of Experts
	Knowledge versus Reasoning
	Knowledge Storage in Transformer
	Indexing with MoE
	Inference
	Multi-Query Attention
	Multi-Query Attention

