10417/617 ATTENTION MASK, FLASH ATTENTION, MULTI-QUERY ATTENTION

- The most fundamental layer in the transformer: Multi-head attention.
- Given vectors $v_1, v_2, ..., v_n$, each in \mathbb{R}^d , a multihead attention layer is defined as:

$$v_i' = C \times concatenate \left(V_r^T \sum_j \alpha_{i,j}^r v_j \right)_{r \in [d/m]} + b$$

• Where
$$(\alpha_{i,j}^r)_{j\in[n]} = softmax (v_i^T Q_r K_r^T v_j + p_{i,j}^r)_{j\in[n]}$$

- Here, C is a $d \times d$ trainable matrix.
- Each v_i looks for the "most similar v_j , according to [d/m] many projection matrices Q_r and K_r .

Transformer Architecture

- A (post-layernorm) transformer block is defined as:
- Given input $W = \mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_n$, each v_i in \mathbb{R}^d .
 - (1). Apply Multi-Head Attention (input dimension d, output dimension d) on W to get $V^{(1)} = v_1^{(1)}, v_2^{(1)}, ..., v_n^{(1)}$.
 - (2). Apply layer-norm on each of the $v_i^{(1)}$ to get $v_i^{(2)}$.
 - (3). Apply residual link: $v_i^{(3)} = v_i^{(2)} + v_i$.
 - (4). Apply a one hidden layer MLP h (input dimension d, output dimension d) on each $v_i^{(3)}$ to get $v_i^{(4)} = h(v_i^{(3)})$ (all the v_i''' in the uses the same h per layer, different h for different layers).
 - (5). Apply layer-norm on each of the $v_i^{(4)}$ to get $v_i^{(5)}$.
 - (6). Apply residual link: $v_i^{(6)} = v_i^{(5)} + v_i^{(3)}$.
- The output $V^{(6)} = v_1^{(6)}, v_2^{(6)}, \dots, v_n^{(6)}$, each $v_i^{(6)}$ in \mathbb{R}^d .

Transformer Architecture

- A (pre-layernorm) transformer block is defined as:
- Given input $W = \mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_n$, each v_i in \mathbb{R}^d .
 - (1). Apply layer-norm on each of the v_i to get $v_i^{(1)}$.
 - (2). Apply Multi-Head Attention on $V^{(1)}$ to get $V^{(2)} = v_1^{(2)}, v_2^{(2)}, ..., v_n^{(2)}$.
 - (3). Apply residual link: $v_i^{(3)} = v_i^{(2)} + v_i$.
 - (4). Apply layer-norm on each of the $v_i^{(3)}$ to get $v_i^{(4)}$.
 - ▶ (5). Apply a one hidden layer MLP h on each $v_i^{(4)}$ to get $v_i^{(5)} = h(v_i^{(4)})$ (all the v_i''' in the uses the same h per layer, different h for different layers).
 - (6). Apply residual link: $v_i^{(6)} = v_i^{(5)} + v_i^{(3)}$.

Computation Time of Transformer Block

A transformer block = MHA (m heads) + MLP.
Assuming the context length is n and the embedding dimension is d.
Forward/Backward time:
nd²(mlp) + (nd² + n²d) (MHA)
(Forward) Backward Memory:
nd(mlp) + (nd + n²m) (MHA)

Reducing Memory Usage of Attention

- Main Memory Usage:
- For each attention head, we need to store the $n \times n$ attention matrix:

$$\blacktriangleright \left[softmax \left(v_i^T Q_r K_r^T v_j + p_{i,j}^r \right)_{j \in [n]} \right]_{i \in [n]}$$

- Let's just consider one row:
 - $softmax\left(v_i^T Q_r K_r^T v_j + p_{i,j}^r\right)_{j \in [n]}$
- Key idea of Flash-Attention:
 - ▶ We store $K_r^T v_j$, $Q_r^T v_j$ for every r and j, this takes memory $d \times n$.
 - We do not store the full softmax matrix, we will "compute them on the fly" to save memory.

Softmax Recomputation

- Consider $0 = \sum_{i \in [n]} y_i \times softmax(x)_i$
- Where for each x_i, y_i , we need computation time d/m to retrieve it.
- Stupid-Attention computation:
 - For i in range(n):
 - Compute norm_factor = norm_factor + $exp(x_i)$.
 - Compute $0 = 0 + y_i \exp(x_i)$
 - Return O/norm_factor
- This only requires memory O(M), where M = d/m is the dimension of y_i

From Stupid Attention to Flash Attention

- Why is Stupid Attention Stupid?
- Floating Point accuracy. We can not compute $\sum exp(x_i)$ accurately! No such accuracy.
- Stupid Attention V2:
 - Go through i, compute the max of x_i as m(x)
 - ► For i in range(n):
 - Compute norm_factor = norm_factor + $exp(x_i m(x))$.
 - Compute $0 = 0 + y_i \exp(x_i m(x))$
 - Return O/norm_factor
- But then we need to compute x_i twice, unless we store it in the memory...

From Stupid Attention V2 to Flash Attention

- Stupid Attention V3 is an upgrade of stupid attention v2, where we only compute x_i once and maintain the correct floating-point accuracy.
- For i in range(n):
 - Compute $m_{new}(x) = \max(m(x), x_i)$
 - Compute norm = $\exp(m(x) m_{new}(x))$ norm + $\exp(x_i m_{new}(x))$.
 - Compute $0 = \exp(m(x) m_{new}(x))0 + y_i \exp(x_i m_{new}(x))$
 - Update $m(x) = m_{new}(x)$
- Output O/norm.

From Stupid Attention V3 to Flash Attention

Now the memory usage is good.

Main problem: For i in range(n).

•Cuda operates on the so-called "Thread Block", so the computation is very fast for operations of "certain sizes".

In stupid attention v3, the computation inside for loop is:

• Vector of size M = d/m per i. This is typically smaller than the "certain sizes" when m is large.

So we need to do some chunking...

Flash Attention

- Flash attention is a little bit more involved than the previous slides.
- It divides the computation in chunks of R
- For i in range(n//R):
 - Compute the softmax for x[iR:iR +R] using the fastest way, which uses memory R. Then compute
 - $O_i = \sum_{j \in [iR, iR+R]} y_j \times softmax(x[iR:iR+R])_j \text{ (only store this } O_i \text{ in SRAM}).$
 - Store the max of x[j] for j in [iR, iR + R) in memory as m[i].
 - Store the normalization factor of the softmax (after subtracting the max) of x[iR:iR + R] in memory as norm[i].
 - Update $m_{new}(x) = \max(m(x), m[i])$
 - Update $0 = 0 \exp(m(x) m_{new}(x)) + \exp(m[i] m_{new}(x)) 0_i \times norm[i]$
 - Update $norm = \exp(m(x) m_{new}(x))norm + \operatorname{norm}[i] \times \exp(m[i] m_{new}(x))$.
 - Update $m(x) = m_{new}(x)$

Recall in the autoregressive training objective

Given X[0:i], we want to predict X[i], for every i in [context_length]

Naïve implementation: Treat X[0:i] as a separate input with label X[i].

Total computation time: context_length * computation time on input X[0:context_length]

Can we do it more efficiently in computation time of a single X[0:context_length]?

Autoregressive Training

Attention Mask

The core of MHA is the soft-max attention score:

$$\bullet \left(\alpha_{i,j}^{r}\right)_{j\in[n]} = softmax\left(v_{i}^{T}Q_{r}K_{r}^{T}v_{j} + p_{i,j}^{r}\right)_{j\in[n]}$$

- ► Key observation: We can set $p_{i,j}^r = -\infty$ if and only if i < j (attention mask).
- In this way, the new value

$$v'_{i} = C \times concatenate \left(V_{r}^{T} \sum_{j} \alpha_{i,j}^{r} v_{j} \right)_{r \in [d/m]} + b$$

▶ v'_i only depends on v_j for $j \leq i$.

Attention: Visulization

Attention: Visulization

0.0

1.0

Can we train a GPT-4 now?

- So we have learned the transformer architecture, how to tokenize our dataset, how to set the training loss, and how to use attention masking.
- Can we train a GPT-4 model now assuming we have enough computing (30K A100 GPUs) and enough data (100T tokens)?
- Theoretically, we can, but there are some further techniques GPT-4 uses to speed up inference/training.

Training with Mixture of Experts

- Mixture of Expert is an architecture that speeds up training by a crazy factor.
- ▶ With it, you can train a 100B parameter model as fast as a 2B one.

Mixture of Experts

Let's look at an article:

► A **black hole** is a region of <u>spacetime</u> where <u>gravity</u> is so strong that nothing, including <u>light</u> and other <u>electromagnetic waves</u>, has enough energy to escape it.^[2] The theory of <u>general relativity</u> predicts that a sufficiently compact <u>mass</u> can deform spacetime to form a black hole.^{[3][4]} The <u>boundary</u> of no escape is called the <u>event horizon</u>. Although it has a great effect on the fate and circumstances of an object crossing it, it has no locally detectable features according to general relativity.^[5] In many ways, a black hole acts like an ideal <u>black body</u>, as it reflects no light.^{[6][7]} Moreover, <u>quantum field theory in curved spacetime</u> predicts that event horizons emit <u>Hawking radiation</u>, with <u>the same spectrum</u> as a black body of a <u>temperature</u> inversely proportional to its mass. This temperature is of the order of billionths of a <u>kelvin</u> for <u>stellar black holes</u>, making it essentially impossible to observe directly.

Knowledge versus Reasoning

- To do the next token prediction in the article, most of the time we are extracting knowledge from the model.
- ▶ (Deep) Reasoning is very rare in the training data.
- ► Key observation:
 - ► Knowledge is sparse!

Knowledge Storage in Transformer

- Knowledge is conjectured to be stored in the MLP layer of a transformer.
- Take in the embedding of some entities like (Pairs, Captial).
- ▶ We extract the knowledge from the MLP (France).
- ▶ It's like looking up in a dictionary.
 - We should do some indexing!
 - We look for knowledge that starts with "P" and only look for Pairs in that chunk of knowledge.

Indexing with MoE

- A (top-1 routing) Mixture of Expert (MoE) layer with k experts is defined as:
- We have k trainable MLPs $M_1, M_2, ..., M_k$, each takes input of dimension d and output a vector of dimension d.
- ▶ We have a trainable router (indexing) R: d -> k, a linear function.
- Given input x, we first compute $R(x) = argmax([Rx]_i)_{i \in [k]}$.
- We output $softmax(Rx)_{R(x)} \times M_{R(x)}(x)$.

Inference

After autoregressive training, we can use the autoregressive language model to generate texts.

Given a prompt s (text), we can

Tokenize the prompt s into a list of integers S.	* Feed S into the autoregressive language model, and obtain its prediction Syrrad.	Update S = concatenate(S, <i>S_{pred}).</i>	Repeat Step *.
	prediction S _{pred} .		

Multi-Query Attention

- Optimized for inference speed.
- Time-consuming step for inference:
 - Feed S into the autoregressive language model, and obtain its prediction S_{pred} .
 - We do not want to recompute model(S) every time we update S.
- Key observation: Caching.
 - We can cache the past $K_r^T v_j$ and $V_r^T v_j$ values for all j < len(S), and no need to recompute them.
 - However, this requires us to cache
 - $d \times len(S)$ many values.

Multi-Query Attention

- Multi-query attention:
- Instead of using $(\alpha_{i,j}^r)_{j \in [n]} = softmax (v_i^T Q_r K_r^T v_j + p_{i,j}^r)_{j \in [n]}$
- $v'_i = C \times concatenate \left(V_r^T \sum_j \alpha_{i,j}^r v_j \right)_{r \in [d/m]} + b$
- We now use $(\alpha_{i,j}^r)_{j \in [n]} = softmax (v_i^T Q_r K^T v_j + p_{i,j}^r)_{j \in [n]}$
- $v_i' = C \times concatenate \left(V^T \overline{\sum_j \alpha_{i,j}^r v_j} \right)_{r \in [d/m]} + b$
- So every head shares the same K, V
 - (of dimension embed_dim x head_dim).

