10417/617

» Given vectors vy, vy, ..., v, €ach in R, a multi-
head attention layer is defined as:

> v, =CX concatenate(VTT 2 a; + b

v.
b])re[d/m]

» Where (a{-

_ TA 1T
J)]_E[n] = Softmax(vi Q Ky vj + p{jj)

j€[n]
» Here, Cisad X d frainable matrix.

» Each v; looks for the "most similar v; , according
to [d/m] many projection matrices Q, and K,..

Transformer Architecture

» A (post-layernorm) tfransformer block is defined as:

» Giveninputw =704, V>, ...,

» (1). Apply Multi-Head Attention (input dimension d, output dimension d) on W to get V() =

Uy, each v; in R4,

» (2). Apply layer-norm on each of the v() to get v, @

» (3). Apply residual link: v(g) = v.(z) + v;.

L @

VLV, e, Uy

> (4). Apply a one hidden layer MLP h (input dimension d, output dimension d) on each v() to get v(4) =

h(v) (all the v;"" in the uses the same h per layer, different h for different layers).

» (5). Apply layer-norm on each of the v;

> (6). Apply residual link: v® =

» The output V(® =

()

(6)

Vs e

(4) to get v(S)

v +),

U;l), each v

)in R4,

o)

Transformer Architecture

» A (pre-layernorm) transformer block is defined as:

» Giveninput W= Vq, Uy, ..., Up, each v; in R%.

» (1). Apply layer-norm on each of the v; to get vl.(l).

(2). Apply Multi-Head Attention on v to get V@ = v 3)

n
(3). Apply residual link: vl@ = vi(z) + v;.
(3)

i

(4)

(4). Apply layer-norm on each of the v~ to get v; .

vV v v Vv

(5). Apply a one hidden layer MLP h on each v to get v = h(w) (all the v}" in the
uses the same h per layer, different h for different layers).

(6). Apply residual link: v = v + v,

v

Computation
Time of

Transformer
Block

A tfransformer block = MHA (m heads) + MLP.

Assuming the context length is n and the
embedding dimension is d.

Forward/Backward time:
nd?(mlp) + (nd? + n*d) (MHA)
(Forward) Backward Memory:

nd(mlp) + (nd + n*m) (MHA)

Reducing Memory Usage of Aftention

Main Memory Usage:

For each attention head, we need fo store the n x n atftention matrix:

[SOftmax(V;TQerUj + pzj)je[n]]

i€[n]

Let’s just consider one row:

T T.,. r.
> Softmax(vi QTKT v] + pl'J)je[n]

Key idea of Flash-Attention:
> We store K/ v;, Qf v; for every r and |, this takes memory d x n.

» We do not store the full softmax matrix, we will *compute them on the fly” to
save memory.

Soffmax Recomputation

» Consider 0 = XiemYi X softmax(x);
» Where for each x;, y;, we need computation time d/m to retrieve it.
» Stupid-Attention computation:
» Foriinrange(n):
» Compute norm_factor = norm_factor + exp(x;).
» Compute 0 = 0 + y; exp(x;)
» Return O/norm_factor

» This only requires memory O(M), where M = d/mis the dimension of y;

From Stupid Attention to Flash Attention

» Why is Stupid Attention Stupid?

» Floating Point accuracy. We can not compute Yexp(x;) accurately!
No such accuracy.

» Stupid Attention V2:

» Go through i, compute the max of x; as m(x)

» Foriinrange(n):
» Compute norm_factor = norm_factor + exp(x; — m(x)).
» Compute 0 = 0 + y; exp(x; —m(x))

» Return O/norm_factor

» But then we need to compute x; twice, unless we store it in the
memory...

From Stupid Attention V2 to Flash

Attention

» Stupid Attention V3 is an upgrade of stupid attention v2, where we only
compute x; once and maintain the correct floating-point accuracy.

» Foriinrange(n):
» Compute my,, (x) = max(m(x), x;)
» Compute norm = exp(m(x) — Mo (x)) norm + exp(xi — Mo (x)) :
» Compute 0 = exp(m(x) — Myuew (x))0 + y; exp(x; — Mpep (X))
» Update m(x) = mye,(x)
» Output O/norm.

From Stupid
Attention V3

to Flash
Attention

Now the memory usage is good

Main problem: For i in range(n).

*Cuda operates on the so-called “Thread Block”, so the computation is very
fast for operations of “certain sizes”.

In stupid attention v3, the computation inside for loop is:

*Vector of size M = d/m per i. This is typically smaller than the “certain sizes”
when mis large.

sl SO We Need to do some chunking...

Flash Attention

» Flash attention is a little bit more involved than the previous slides.
» It divides the computation in chunks of R
» Foriinrange(n//R):

» Compute the softmax for x[iR:IR +R] using the fastest way, which uses memory R.
Then compute

> 0; = Yjefirir+r)Yj X softmax(x[iR: iR + R]); (only store this 0; in SRAM).
Store the max of x[j] forjin [iR, iR + R) in memory as m[i].

Store the normalization factor of the softmax (after subtracting the max) of x[iR: iR +
R] in memory as normfi].

Update my,,, (x) = max(m(x), m[i])
Update 0 = 0 exp(m(x) — Mpew (X)) + exp(m[i] — Mye, (%)) 0; X norm|i]

Update norm = exp(m(x) — Myey (x)) norm + norml[i] x exp(m[i] — mpew (x)).

Update m(x) = myew (%)

Recall in the autoregressive training objective

Given X[0:i], we want to predict X[i], for everyiin
[confext_length]

A 4

Naive implementation: Treat X[0:i] as a separate input with label X]i].

Autoregressive

Total computation time: context_length * computation time TrOining
on input X[0:context_length]

A 4

Can we do it more efficiently in computation time of a single
X[0:context_length] ¢

» The core of MHA is the soff-max
attention score:

(al’])je[n] sof max(vl QK v pl’])je[n]

» Key observation: We can setf p;; = —oo if

. and only if i < (attention mask).
Atftenfion Mask >

In this way, the new value
» v, =C X

concatenate(VT -a-r-v-) +b
r Z] e re[d/m]

» v; only dependsonv; forj < i.

Attention:
Visulization

Aﬁ%§
while
the
it
banana

Luﬁ'
happy
She
says
Thank
you
Tom

You
are

18R

Tom

You

are
welcomeé
Lucy

|
m

ha@ Y

hESB
yo
Let
a

ba ng
togé¥h¢n

Attention patterns of the first layer, head 5

Attention:
Visulization

ba Fplg
tog& eh

togégher
After
whilé

heg
banana
Luq'
happy
She
says
Thank
you
Tont

are

f12R

Torm

n

You

are
welcome
Lucy

|

ha@%
he B

fUC]J NJCU(U
CCC

NN

ba tna
togé} er
Aﬁ%;
while
the
reld
banana
Luq'
happy
She
says
Thank
you
Tont

You
are

984
Tom

You

are
welcomeé
Lucy

|
m

a
hapgx
he B
yo
Let

at

ba n%
togé} ek

> (o= 0 >~ —=on o5 0V S0V© QU = SUOTT £ 5 SUU > —E>000 Huklmss
cm?s;zwe é'§c3 > E g—o-?;% B cﬂ’gzgcc:g o= o %QEOCEQEE‘; Ea—;gj{“’
o 32 g oo & s =& 3a° e e £ 5370 3 e B F oo = 63 "2c
H Q = © oC ©
Q © o = © < ~ — L c Tor
L2 9 o5 a g 05
+— +—J

- 1.0

r0.8

Tom
says

DO@
worry

helR

Lucy
n
%{8
pik

They

lo or
f

150
Aﬂqg

=]

Lu%'
happy
She
says
Thank
you
Tom

You
are

00
fi eng
Tom
"
You
are
welcomeé
Lucy

|
m

a
hap%x
heB
yo
Let

at

gL

banana
tog&?]qn
U = —EOEOOSTCHEOR. £ o T=00 COUN SWAUTE LS00 STUG 0> ‘U0 = X3 SUOTT= £ 5 SUU = — OF D UTSE
B R ST SR B T 0 TS U R SUE B S U STR WER
P < ¢ “_'_mog o o= Cw(;uog_lmm_c'_ |gE g3 &<
S ®© ©O - © < = — = < [ive))
= Qo 06 o v Q5
o = i

r0.8

1.0

9

; y
Ly

om

n
a

Iookaﬁi
ban%pa
u

cap

ﬁné

Tom
says

r0.8

DO[%
worry

I

13
oA
TBsy

or
ba tng
togéﬁher
Aﬁ%§
while
theg
fol
bangﬁg
Luq'
happy
She
says
Thank
you
Tom

You
are

it

Tom

You

are
welcome
Lucy

|
m

ha& X
hé%ﬂ
YO

Let

ol

ba ng
togéﬁhqn

>~ == OO0 s o =00 00U DW= =00 SOUM >3 ON-= X5 SUOTT = OO S —C>000 HnEUm-E
O e s TETEOTS TSR £ o TS0a TOE fok © JLp LY=£3 E JUCgE £ JLL 3 TE @ .

1.0

0.8

ogé&
Aﬂag
whilé

heg
banana
Luﬁ
happy
She
says
Thank
you
Tom

You
are

00
fﬁen

Tom

n

You

are

welcomeé

Lucy

hapg
g;%

ba
togé¥ﬁ§

== COS—CHOE, U= c->> =03 00UV ZW=UTE GOV SOV "S> U =X SUCTT: £-= S0V > —£>000 Lo
&5 3& % 2 B g% S = §§ EU’JEE 9@l U= vece OTo o> %g% o5 o ‘g S5 © %cz—*ggg{ 5
3 x g = Fa Q9 v TopE° I TFF IR F SLE o3 @<
S ® T s g c = = i~ < T
= Q 05 o <] 05
] =]

Can we train a GPT-4 now?e

» So we have learned the transformer architecture, how to tokenize our
dataset, how to set the fraining loss, and how to use attention masking.

» Can we frain a GPT-4 model now assuming we have enough computing
(30K A100 GPUs) and enough data (100T tokens)?

» Theoretically, we can, but there are some further techniques GPT-4 uses to
speed up inference/training.

Training with Mixture of Experts

» Mixture of Expert is an architecture that speeds up training by a crazy
factor.

» With it, you can train a 100B parameter model as fast as a 2B one.

Mixture of Experts

» Let's look at an artficle:

» Ablack hole is a region of spacetime where gravity is so strong that nothing,
including light and other electromagnetic waves, has enough energy to escape
it.2l The theory of general relativity predicts that a sufficiently compact mass can
deform spacetime to form a black hole.2l“l The boundary of no escape is called
the event horizon. Although it has a great effect on the fate and circumstances of an
object crossing it, it has no locally detectable features according to general
relativity.>l In many ways, a black hole acts like an ideal black body, as it reflects no
light.2I”l Moreover, quantum field theory in curved spacetime predicts that event
horizons emit Hawking radiation, with the same spectrum as a black body of
a temperature inversely proportional to its mass. This temperature is of the order of
billionths of a kelvin for stellar black holes, making it essentially impossible to observe
directly.

https://en.wikipedia.org/wiki/Spacetime
https://en.wikipedia.org/wiki/Gravity
https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Electromagnetic_radiation
https://en.wikipedia.org/wiki/Black_hole#cite_note-2
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Black_hole#cite_note-wald_1997-3
https://en.wikipedia.org/wiki/Black_hole#cite_note-NYT-20150608-4
https://en.wikipedia.org/wiki/Boundary_(topology)
https://en.wikipedia.org/wiki/Event_horizon
https://en.wikipedia.org/wiki/Black_hole#cite_note-HamiltonA-5
https://en.wikipedia.org/wiki/Black_body
https://en.wikipedia.org/wiki/Black_hole#cite_note-6
https://en.wikipedia.org/wiki/Black_hole#cite_note-7
https://en.wikipedia.org/wiki/Quantum_field_theory_in_curved_spacetime
https://en.wikipedia.org/wiki/Hawking_radiation
https://en.wikipedia.org/wiki/Thermal_radiation
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Kelvin
https://en.wikipedia.org/wiki/Stellar_black_hole

Knowledge versus Reasoning

» To do the next token prediction in the article, most of the time we are
extracting knowledge from the model.

» (Deep) Reasoning is very rare in the fraining data.
» Key observation:

» Knowledge is sparse!

Knowledge Storage in Transformer

>

Knowledge is conjectured to be stored in the MLP layer of a transformer.

» Take in the embedding of some entities like (Pairs, Capfial).

>
>

We extract the knowledge from the MLP (France).
It's like looking up in a dictionary.
» We should do some indexing!

» We look for knowledge that starts with “P” and only look for Pairs in that chunk of
knowledge.

Indexing with MoE

» A (top-1 routing) Mixture of Expert (MoE) layer with k experts is defined as:

» We have k trainable MLPs M, M,, ..., M;,, each takes input of dimension d
and output a vector of dimension d.

» We have a trainable router (indexing) R: d -> k, a linear function.
» Given input x, we first compute R(x) = argmax([Rx];)eqx)-

> We oufput softmax(Rx)gx) X Mgy ().

Inference

After autoregressive training, we
can use the autoregressive
language model to generate
texts.

Given a prompt s (text), we can

* Feed S intfo the
Tokenize the autoregressive Update S =
prompt sinto alist language model, concatenate(S, Repeat Step *.
of integers S. and obtain its Ssreal-
prediction Syyeq.

Multi-Query Attention

Optimized for inference speed.
Time-consuming step for inference:

Feed S into the autoregressive language
model, and obtain its prediction Sy;.eq.

We do not want to recompute model(S)
every fime we update S.

Key observation: Caching.

We can cache the past K/ v; and
V"v; values for all j < len(S), and no need
to recompute them.

However, this requires us to cache

d x len(S) many values.

Multi-Query Aftention

Multi-query attention:

Instead of using (a{j) . - softmax(viTQrK,ij +
7/ jEn

r
Pij)je[n]

V] =€ X concatenate(VrT Yial;

) vj)re[d/m]

= Softmax(viTQr

+ b

We now use (a{j)_
-) =7 je[n]
PLi) jem
T — concatenate(2 Qi vj) s + b
: reld/m
So every head shares the same K, V

(of dimension embed_dim x head_dim).

	10417/617
	Multi-Head Attention Layer
	Transformer Architecture
	Transformer Architecture
	Computation Time of Transformer Block
	Reducing Memory Usage of Attention
	Softmax Recomputation
	From Stupid Attention to Flash Attention
	From Stupid Attention V2 to Flash Attention
	From Stupid Attention V3 to Flash Attention
	Flash Attention
	Autoregressive Training
	Attention Mask
	Attention: Visulization
	Attention: Visulization
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Can we train a GPT-4 now?
	Training with Mixture of Experts
	Mixture of Experts
	Knowledge versus Reasoning
	Knowledge Storage in Transformer
	Indexing with MoE
	Inference
	Multi-Query Attention
	Multi-Query Attention

